• Title/Summary/Keyword: large dams

Search Result 171, Processing Time 0.026 seconds

Impact of the Mekong River Flow Alteration on the Tonle Sap Lake in Cambodia

  • Lee, Giha;Kim, Joocheol;Jung, Kwansue;Lee, Hyunseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.231-231
    • /
    • 2015
  • Rapid development in the upper reaches of the Mekong River, in the form of construction of large hydropower dams and reservoirs, large irrigation schemes, and rapid urban development, is putting water resources under stress. Many scientific reports have pointed out that cascade dams along the Mekong River lead to serious problems: not only hydrologically but also a decline of agricultural productivity due to a decrease of sediment supply in the Mekong Delta and a change of fish amount due to drastic change of the water environment. Cambodia and Vietnam, located in the lowest Mekong basin, are gravely affected by radical changes of hydrologic regime due to Mekong River developments. In particular, the Tonle Sap Lake in Cambodia is very sensitive to the flood cycle and flow variation of the Mekong River as well as inflow water quality from the Mekong River. More than 50% of Cambodian GDP depends on the primary industries such as agriculture, fishing, and forestry, and the Tonle Sap Lake plays an important role to support the national economy in Cambodia. In addition, Cambodian people usually take nourishment from the fish of Tonle Sap Lake. This research aims to assess the impacts of the Mekong river flow alternation on the hydrologic regime of the Mekong River - Tonle Sap Lake. We carried out rainfall-runoff-inundation simulation using CAESER-LISFLOOD for integrated water resource management in the Tonle Sap Basin and then analyze flood inundation variation of the Tonle Sap Lake due to the scenarios. Furthermore, the simulated inundation maps were compared to MODIS satellite images for model verification and hydrologic prediction.

  • PDF

Application of analytic hierarchy process technique for selecting a hydrothermal energy site (수열에너지 입지 선정을 위한 계층화분석법의 적용)

  • Joohyun Ahn;Suwan Park;Changhyun Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.2
    • /
    • pp.69-81
    • /
    • 2024
  • In this study, an evaluation system that can be used to evaluate the feasibility of developing and supplying hydrothermal energy for the operation of large-scale complex facilities was developed. To this end, this study derived factors to be considered when selecting a location for the use of hydrothermal energy using raw water from multi-purpose dams and regional water supply systems through literature survey and expert interviews. The evaluation indicators derived from this study are divided into four sectors: hydrothermal energy utilization factors, location factors, planning factors, and disaster safety factors, and are composed of 10 mid-level indicators and 34 detailed planning indicators. The relative importance of all factors was derived using the Analytic Hierarchy Process (AHP) technique, and the developed evaluation indicators and relative importance were applied to four multi-purpose dam regions in the country. As a result, it was found that in the development and use of hydrothermal energy utilizing regional raw water supply line the urban planning conditions of the supply site can have a greater impact on the location selection results than the hydrothermal energy development itself. Due to the characteristics of the evaluation indicators developed in this study and their nature as comprehensive indicators, it is believed that the results should be applied to determine the overall adequacy of site selection in the early stages of hydrothermal energy development. In the future, it is believed that it will be necessary to analyze the problems in supplying and operating hydrothermal energy using raw water from multi-purpose dams and regional water resources. Based on the analysis the evaluation system developed in this study is expected to be improved and supplemented.

The study of mountain conservation and utilization

  • Lee, Sung-Gie
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.157-162
    • /
    • 2003
  • Boeun-gun is hard to develop, because of large numbers of mountains and vast distribution of limited development districts. However it is easy to access from the entire country, and there are large conservation area such as national park and dams. Short-term plans such as attraction of tourists can be established using these advantages. Long-term plans can be planed with stable establishment of continuous considerations and supports. These supports will be rewarded while it demands some time and costs. Private owned mountains can be converted from negligence upkeep of property to utilization of mountains with basic consideration of mountain conservation. This may contribute the essential function of mountain.

An Effect of Uplift Pressure Applied to Concrete Gravity Dam on the Stress Intensity Factor (중력식 콘크리트 댐에 작용하는 양압력이 응력확대계수에 미치는 영향)

  • Lee Young-Ho;Jang Hee-Suk;Kim Tae-Wan;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.841-850
    • /
    • 2004
  • The modeling of uplift pressure within dam, on the foundation on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams, i.e. crack stability in concrete dam can correctly be predicted when uplift pressures are accurately modelled. Current models consider a uniform uplift distribution, but recent experimental results show that it varies along the crack faces and the procedures for modeling uplift pressures are well established for the traditional hand-calculation methods, but this is not the case for finite element (FE) analysis. In large structures, such as dams, because of smaller size of the fracture process zone with respect to the structure size, limited errors should occur under the assumptions of linear elastic fracture mechanics (LEFM). In this paper, the fracture behaviour of concrete gravity dams mainly subjected to uplift Pressure at the crack face was studied. Triangular type, trapezoidal type and parabolic type distribution of the uplift pressure including uniform type were considered in case of evaluating stress intensity factor by surface integral method. The effects of body forces, overtopping pressures are also considered and a parametric study of gravity dams under the assumption of LEFM is performed.

Construction stages analyses using time dependent material properties of concrete arch dams

  • Sevim, Baris;Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.599-612
    • /
    • 2014
  • This paper presents the effects of the construction stages using time dependent material properties on the structural behaviour of concrete arch dams. For this purpose, a double curvature Type-5 arch dam suggested in "Arch Dams" symposium in England in 1968 is selected as a numerical example. Finite element models of Type-5 arch dam are modelled using SAP2000 program. Geometric nonlinearity is taken into consideration in the construction stage analysis using P-Delta plus large displacement criterion. In addition, the time dependent material strength variations and geometric variations are included in the analysis. Elasticity modulus, creep and shrinkage are computed for different stages of the construction process. In the construction stage analyses, a total of 64 construction stages are included. Each stage has generally $6000m^3$ concrete volume. Total duration is taken into account as 1280 days. Maximum total step and maximum iteration for each step are selected as 200 and 50, respectively. The structural behaviour of the arch dam at different construction stages has been examined. Two different finite element analyses cases are performed. In the first case, construction stages using time dependent material properties are considered. In the second case, only linear static analysis (not considered construction stages) is taken into account. Variation of the displacements and stresses are obtained from the both analyses. It is highlighted that construction stage analysis using time dependent material strength variations and geometric variations has an important effect on the structural behaviour of arch dams. The maximum longitudinal, transverse and vertical displacements obtained from construction stages and static analyses are 1.35 mm and 0 mm; -8.44 and 6.68 mm; -4.00 and -9.90 mm, respectively. In addition, vertical displacements increase from the base to crest of the dam for both analyses. The maximum S11, S22 and S33 stresses are obtained as 1.60MPa and 2.84MPa; 1.39MPa and 2.43MPa; 0.60MPa and 0.50MPa, respectively. The differences between maximum longitudinal, transverse, and vertical stresses obtained from construction stage and static analyses are 78%, 75%, and %17, respectively. On the other hand, there is averagely 12% difference between minimum stresses for all three directions.

Comparison of the Effects of Continuous Erosion Control Dams on Benthic Macroinvertebrate Communities Before and After the Rainy Season (연속적인 사방댐이 장마 전·후 저서성 대형무척추동물 군집에 미치는 영향 비교)

  • An, Chae Hui;Han, Jung Soo;Hyun, Jae Bin;Choi, Jun Kil;Lee, Hwang Goo
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.54-63
    • /
    • 2021
  • This study aimed to investigate changes in benthic macroinvertebrate communities caused by erosion control dams using data obtained from three erosion control dams in Wonju, Gangwon Province, before and after the rainy season. Surveys were conducted four times from March to September 2019, and survey points were continuously selected during the installation of closed-type and open-type dams. A total of eight points from the upstream and downstream regions of each dam type were selected. The flow velocity of both the closed and open types increased, but the closed type exhibited a relatively higher flow velocity than the open type. Benthic macroinvertebrate species and individuals mostly decreased after the rainy season. A relatively large number of species and individuals were found upstream of the closed-type dam. An analysis of the ephemeroptera-plecoptera-trichoptera groups showed relatively reduced ephemeroptera in the closed-type dam and reduced trichoptera in the open-type dam. The periods before and after the rainy season could be divided based on the results of a similarity analysis. The open type showed relatively minimal changes before and after the rainy season.

A Note on Risk Factors for Calf Mortality in Large-Scale Dairy Farms in the Tropics : A Case Study on Rift Valley Area of Kenya

  • Bebe, B.O.;Abdulrazak, S.A.;Ogore, P.O.;Ondiek, J.O.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.855-857
    • /
    • 2001
  • The aim of this study was to assess the associations of some potential risk factors and occurrence of calf mortality in large-scale dairy farms. Njoro area of the Rift valley, Kenya was selected due to its potential of large-scale dairy farms, since the time of the Europeans settlers. The study was retrospective and focused on the calves dying from January 1996 through October 1998. Sample of studied population consisted of 105 calves extracted from the farm records. Data was collected using a questionnaire and were grouped into farm-level and animal-level factors. Calf mortality was 15.6% and important risk factors for calf mortality were sex of calf, season of birth, pneumonia disease, age of dam when calf was born and house type for calves. Female calve born during colder wet seasons and born to dams of 2-4.5 years of age were equally at higher risk. Calves raised in movable pens compared to those raised in permanent pens were at higher risk of mortality from pneumonia. Animal level factors were major causes of calf mortality in commercial farms used in this study and therefore details study is needed in these factors in controlling the calf mortality rates.

Analysis of Korean TMLD Design Flow Variation due to Large Dam Effluents and Water Use Scenarios

  • Shin, Hyun-Suk;Kang, Doo-Kee;Kim, Sang-Dan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.74-83
    • /
    • 2007
  • The goal of this study is to establish an integrated watershed hydrologic model for the whole Nakdong River basin whose area is an approximately 24,000 km2. Including a number of watershed elements such as rainfall, runoff, water use, and so on, the proposed model is based on SWAT model, and is used to improve the flow duration curve estimation of ungauged watersheds for Korean Total Maximum Daily Load (TMDL). The model is also used to recognize quantitatively the river flow variation due to water use elements and large dam effluents in the whole watershed. The established combined watershed hydrologic model, SWAT-Nakdong, is used to evaluate the quantified influences of artificial water balance elements, such as a dam and water use in the watershed. We apply two water balance scenarios in this study: the dam scenario considering effluent conditions of 4 large multi-purpose dams, Andong dam, Imha dam, Namgang dam, and Habcheon dam, and the water use scenario considering a water use for stream line and the effluent from a treatment plant. The two scenarios are used to investigate the impacts on TMDL design flow and flow duration of particular locations in Nakdong River main stream. The results from this study will provide the basic guideline for the natural flow restoration in Nakdong River.

  • PDF

Large scale flood inundation of Cambodia, using Caesar lisflood

  • Sou, Senrong;Kim, Joo-Cheol;Lee, Hyunsoek;Ly, Sarann;Lee, Giha;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.211-211
    • /
    • 2015
  • Mekong River is the world's $10^{th}$ longest river and runs through China's Yunnan province, Burma, Thailand, Laos, Cambodia and Vietnam. And Tonle Sap Lake, the largest fresh water body in Southeast Asia and the heart of Mekong River system, covers an area $2,500-3,000Km^2$ in dry season and $10,000-16,000Km^2$ in wet season. As previously noted, the water within Sap river flows from the Mekong River to Tonle Sap Lake in flood season (between June and October) and backward to Mekong River in dry season. Recently the flow regime of Sap River might be significantly affected by the development of large dams in upstream region of Mekong River. This paper aims at basic study about the large scale flood inundation of Cambodia using by CAESAR-Lisflood. CAESAR-Lisflood is a geomorphologic / Landscape evolution model that combines the Lisflood-FP 2d hydrodynamic flow model (Bates et al, 2010) with the CAESAR geomorphic model to simulate flow hydrograph and erosion/deposition in river catchments and reaches over time scales from hours to 1000's of years. This model is based on the simplified full Saint-Venant Equation so that it can simulate the interacted flow of between Mekong River and Tonle Sap Lake especially focusing on the flow direction change of Sap River by season.

  • PDF

Temperature Effects in the Resistivity Monitoring at Embankment Dams (저수지 전기비저항 모니터링에서의 온도효과)

  • Kim, Eun-Mi;Cho, In-Ky;Kim, Ki-Seog;Yong, Hwan-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.82-93
    • /
    • 2018
  • Resistivity monitoring data at embankment dams are affected by the seasonal temperature variation. Especially when the seasonal temperature variation is large like Korea, the temperature effects may not be ignored in the longterm resistivity monitoring. Therefore, temperature effects can make it difficult to accurately interpret the resistivity monitoring data. In this study, through analyzing the time series of ground temperature collected at an embankment dam, ground temperature variations are calculated approximately. Then, based on the calculated temperature profile with depth, the inverted resistivity model of the embankment dam is corrected to remove the temperature effects. From these corrections, it was confirmed that the temperature effects are significant in the upper, superficial part of the dam, but can be ignored at depth. However, temperature correction based only on the temperature distribution in the dam body cannot remove the temperature effect thoroughly. To overcome this problem, the effect of temperature variation in the reservoir water seems to be incorporated together with the air temperature variation.