• Title/Summary/Keyword: lapilli

Search Result 49, Processing Time 0.018 seconds

Controlling Factors on the Development and Connectivity of Fracture Network: An Example from the Baekildo Fault in the Goheung Area (단열계의 발달 및 연결성 제어요소: 고흥지역 백일도단층의 예)

  • Park, Chae-Eun;Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.615-627
    • /
    • 2021
  • The Baekildo fault, a dextral strike-slip fault developed in Baekil Island, Goheung-gun, controls the distribution of tuffaceous sandstone and lapilli tuff and shows a complex fracture system around it. In this study, we examined the spatial variation in the geometry and connectivity of the fracture system by using circular sampling and topological analysis based on a detailed fracture trace map. As a result, both intensity and connectivity of the fracture system are higher in tuffaceous sandstone than in lapilli tuff. Furthermore, the degree of the orientation dispersion, intensity, and average length of fracture sets vary depending on the along-strike variation in structural position in the tuffaceous sandstone. Notably, curved fractures abutting the fault at a high angle occur at a fault bend. Based on the detailed observation and analyses of the fracture system, we conclude as follows: (1) the high intensity of the fracture system in the tuffaceous sandstone is caused by the higher content of brittle minerals such as quartz and feldspar. (2) the connectivity of the fracture system gets higher with the increase in the diversity and average length of the fracture sets. Finally, (3) the fault bend with geometric irregularity is interpreted to concentrate and disturb the local stress leading to the curved fractures abutting the fault at a high angle. This contribution will provide important insight into various geologic and structural factors that control the development of fracture systems around faults.

Petrological Characteristics and Nondestructive Deterioration Assessments for Foundation Stones of the Sebyeonggwan Hall in Tongyeong, Korea (통영 세병관 초석의 암석학적 특성 및 비파괴 손상평가)

  • Han, Doo Roo;Kim, Sung Han;Park, Seok Tae;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.199-212
    • /
    • 2021
  • The Sebyeonggwan Hall (National Treasure No. 305) is located on the Naval Headquarter of Three Provinces in Tongyeong, and it has partly undergone with several rebuilding, remodeling, repairing and restorations since it's the first establishment in Joseon Dynasty (AD 1605) of ancient Korea. This study focuses on 50 foundation stones that comprise the Sebyeonggwan. These stones are made of six rock types and currently have various shapes of the surface damages. As the foundation stones, the dominant rock type was dacitic lapilli tuffs, and provenance-based interpretation was performed to supply alternative stones for conservation. Most of the provenance rocks for foundation stones showed highly homogeneity with their corresponding stones of petrography, mineralogy and magnetic susceptibility. According to surface deterioration assessments, the most serious damages of the stones were blistering and scaling. The deterioration mechanism was identified through the analysis of inorganic contaminants, and the primary reason is considered salt weathering caused by sea breeze and other combined circumstances. Based on the mechanical durability of the stones, there was no foundation stone that required the replacement of its members attributed to the degradation of the rock properties, but conservation treatment is considered necessary to delay superficial damage. The foundation stones are characterized by a combined outcome of multiple petrological factors that caused physical damage to surfaces and internal defects. Therefore, it's required to diagnosis and monitoring the Sebyeonggwan regularly for long-term preservation.

Mineralogy and Geochemistry of Jido kaolin deposits (지도 도석광상에 대한 광물학적 및 지구화학적 연구)

  • Park, Young Seog;Kim, Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.80-93
    • /
    • 1993
  • Jido kaolin deposits developed in the rhyolitic tuff of Cretaceous are located in the western part of Sinan-gun, Jeonranam-do. Jido kaolin deposits is predominantly composed of pyrophyllite, kaolinite and illite. On the basis of mineral assemblage Jido kaolin deposits can be divided into three alteraion zone from the center of alteration to the margin; kaolinite, kaolinite-pyrophyillite and pyrophyillite zones. Discriminant analysis show that $Al_2O_3$, $K_2O$, $Na_2O$, CaO of major elements are discriminant elements classifying kaolinite, kaolinite-pyrophyllite and pyrophyllite zones, while in case of trace elements Cr, Ni, Sc, Zn, and Zr are discriminant elements. Kaolin deposits has been formed by the hydrothermal alterations of the volcano rocks such as rhyolitic tuff and lapilli tuff, in late cretaceous. On the basis of the results of X-ray diffraction analysis, the deposits can be classified into three types of minerals assemblages; kaolinite, kaolinite-pyrophyllite and pyrophyllite zones. All the assemblages contain quartz and muscovite, but the kaolinite zone contains kaolinite, illite and chlorite, the kaolinite-pyrophyllite zone contains kaolinite, pyrophyllite and the pyrophyllite zone contains illite and pyrite.

  • PDF

Volcano-Stratigraphy and Petrology of the Volcanic Mass in the Koheung Peninsula, South Cheolla Province, Korea (전남(全南) 고흥반도(高興半島)에 분포(分布)하는 화산암류(火山岩類)의 화산층서(火山層序) 및 암석학적(岩石學的) 연구(硏究))

  • Yun, Sung Hyo;Hwang, In Ho
    • Economic and Environmental Geology
    • /
    • v.21 no.4
    • /
    • pp.335-348
    • /
    • 1988
  • The author aimed to describe the volcano-stratigraphy and petrology of the volcanic mass in the Koheung peninsula, South Cheolla province. The volcanic mass is composed of the volcanics and intrusives of late Cretaceous which extruded the Pre-cambrian metamorphic(Jirisan gneiss complex) and the early Cretaceous sedimentary(Duwon Formation) basement. The volcanic pile consists of, in ascending order, Bibongsan andesite, Koheung tuff and breccia, and Palyeongsan welded tuff, and are intruded by ring intrusives( intrusive breccia, andesite porphyry, intrusive rhyolite and fine-grained quartz-diorite) and central pluton(diorite, quartz monzodiorite, biotite granite and micrographic granite). Bibongsan andesite mainly consists of andesite tuff and lava. Koheung tuff consists of alternation of fine tuff, coarse tuff and lapilli tuff, and Palyeongsan welded tuff which overlies Koheung tuff, comprises K-feldspar and quartz phenocrysts, elongated brown fiamme, lithic fragments in matrix of devitrified brown glass shards, and mainly consists of rhyodacite to rhyolite vitric ash-flow tuff. The results of petrochemical studies of the igneous rocks suggest that the rocks were a serial differentiational products of fractional crystallization of calc-alkaline magma series. This study reveals that the volcanic mass in this area is inferred to the remnant of the resurgent cauldron, measuring 30 by 25 km in diameter. The cauldron block was lowered at least 1,000 m by ring fault displacement.

  • PDF

Petrology and Structural Geology of the Late Cretaceous Volcanic Rocks in the Northeastern Part of Yucheon Basin (유천분지(楡川盆地) 북동부(北東部) 백악기(白堊記) 화산암류(火山岩類)의 화산암석학(火山岩石學) 및 지질구조(地質構造))

  • Kim, Sang Wook;Lee, Young Gil
    • Economic and Environmental Geology
    • /
    • v.14 no.1
    • /
    • pp.35-49
    • /
    • 1981
  • The studied area is largely occupied by thick piles of the late Cretaceous volcanic rocks of the Yucheon group, which is northeastern border part of the vast volcanic region in the Yucheon basin. The Yucheon group overlies the Geoncheonri Formation and is intruded by granitic and dioritic stocks and dykes. The group can be devided into two parts; the lower is Jusasan andesitic rocks which was called as Jusasan Porphyrite Formation by Tadeiwa in 1929, and the upper is Unmunsa rhyolitic rocks. The volcanic pile consists mainly of various tuffs such as tuff breccia, lapilli tuff, coarse to fine tuff and tuffaceous sediments, and interlayered flows, which range from basaltic andesite to rhyolite in their lithology. The results of petrochemical and volcanostratigraphic studies on the Jusasan andesitic socks suggest that the volcanic rocks were derived from two cyclic evolutions of magmatic fractionation. Systematic study of 5226 joints from the area reveals two sets of steep joints striking $N20^{\circ}-40^{\circ}E$ and $N40^{\circ}-70^{\circ}W$, are dominant and coincide with the fault pattern developed in the area. Three defferent maximum principal stress axes were recognized from conjugate shear joints, which are trending east-west, north-northwest, and north-northeast.

  • PDF

Mineral Paragenesis and Chemical Composition of Sangeun Au-Ag Ore Vein, Korea (상은광산(常隱鑛山)의 Au-Ag 광맥(鑛脈)의 광물(鑛物) 공생(共生) 및 화학조성(化學組成))

  • Kim, Moon Young;Shin, Hong Ja;Kim, Jong Hwan
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.347-361
    • /
    • 1991
  • The Sangeun ore deposit is located in a volcanic belt within the Gyeongsang Basin in south western Korea. The ore deposit is of representative epithermal Au-Ag quartz vein type developed in lapilli tuff. This paper presents the mineralization with special emphasis on mineral zoning of the deposits. Principal points are summarized as follows: (1) Four stages of mineralization are recognized based on macrostructures. From ealier to later they are stage I(arsenopyrite-pyrite-quartz), stage II(Au-Ag bearing Pb-Zn-quartz), stage III(barren quartz), and stage IV(dickite-quartz). (2) Electrum principally occurs with arsenopyrite and galena in stage II, and has chemical compositions of 72.9-67.1 Ag atom %, and has Ag/Au ratio of 2.69-2.04. (3) Sphalerite varies in its FeS content according to the mineralization stages; 22.03-18.60 mole % FeS and 1.33-0.23 mole % MnS in stage IB, 16.11-8.64 mole % FeS and 1.33-0.23 mole % MnS in stage II. (4) Alteration zones of mineral assemblage, from the vein to the wall-rock, consist of sericite - quartz - pyrite, sericite - quartz - dickite, sericite - chlorite plagioclase respectively.

  • PDF

Petrology of the Igneous Rocks in the Goseong area, Gyeongsang Basin II. Trace Element Geochemistry and Rb-Sr Radiometric Age (경상분지 고성지역의 화성암류에 대한 암석학적 연구 II. 미량원소 지구화학과 Rb-Sr 방사성 연대)

  • Jwa, Yong-Joo
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.473-483
    • /
    • 1998
  • The igneous rocks in the Goseong area are composed of the volcanic rocks (andesitic lapilli tuff and rhyodacite), Bulgugsa granites (Hornblende-biotite granite and two pyroxene granite) and intrusive andesites. In the variation diagrams of the trace and rare earth element contents and elemental ratios as well as the REE patterns, the three igneous rock types show different variational trends and patterns. The geochemical features represent that the igneous rocks in the area were formed from three different magmatic pulses. Two independently carried out Rb-Sr isotope experiments for the Goseong granites show that the whole rock ages and Sr initial ratios of the granites are $66.4{\pm}6.2Ma$, $0.70517{\pm}22(2{\sigma})$ and $71.3{\pm}6.8Ma$, $0.70506{\pm}18(2{\sigma})$, respectively. These results suggest that the granites magma originated from the lower crustal materials of igneous origin intruded into the area during the late Cretaceous period. Masan hornblende-biotite granite emplaced at the vicinity of the Goseong area is very similar to the Goseong granite in its mineral compositions, major, trace and rare earth element contents and patterns. The intruding age (100 Ma) of the Masan granite is order than that of the Geseong granite, however. The similarity of the geochemical natures but the contrast of the intruding ages between the Masan and Goseong granites possibly indicate that the magma generation from the same source materials occurred at a temporal interval of ca. 30 Ma.

  • PDF

Stratigraphic Erection and Orbicular Rocks of the Yeongdo Island, Busan, Korea -With Emphasis on Orbicular-Tuff and-Hornfels- (부산직할시(釜山直轄市) 영도지역(影島地域)의 층서설정(層序設定)과 구상암(球狀岩)에 관(關)한 연구(硏究) -구상(球狀)응회암과 구상(球狀)혼휄스를 중심(中心)으로-)

  • Kim, Haang Mook
    • Economic and Environmental Geology
    • /
    • v.17 no.4
    • /
    • pp.299-314
    • /
    • 1984
  • The Yeongdo Island in Busan City is a remnant of the latest Cretaceous volcano, and consists geologically of andesites, rhyolite tuff, pelitic and psammitic hornfelses, lapilli rhyodacite tuff of the Yucheon Group, felsite and felsite porphyry of the Bulgugsa intrusives, and Holocene sediments in ascending order. The hornfelses are bound to the Taejongdae Formation. The stratigraphic position of the Formation is determined definitely into the Yucheon Group, thus the geologic age is approximately the same with the volcanic rocks of the Group. The sediments had been thermally metamorphosed to make pelitic and psammitic hornfelses of the albite epidote hornfels facies by the effects of active hydrothermal circulation, vaporization, and hybridization of andesitic solution, or of basification of acidic intrusives. Thus, on occasion, those hornfelses are not used to be distinguished from the andesitic rocks in the southeastern part of the Korean peninsula. The paleocurrent direction determined from several cross-beddings of the Taejongdae Formation is suggested to be from southwest to northeast. Orbicular rocks occur in hornfelsed rhyolite tuff, pelitic- and psammitic-hornfelses, and felsite porphyry at a lot of outcrops in the area of southwestern shoreline of the Yeongdo Island. Orbicules in rhyolite tuff and hornfels in the island might have originated from diffusion processes of metasomatic metamorphism carried out by hydrothermal solution rised from the intrusive adamellite which may be emplaced deeply under the Yeongdo volcanics. Those orbicules are due to metasomatic, secondary, and epigenetic origin. Proto-, multi-shelled, and multi-cored orbicules are described in the orbicular tuff. But multi-cored orbicules are not found in the orbicular fornfels. 250 tuff-orbicules numbered sporadically are in $20,000m^2$ area of the locality of orbicular tuff. About 60 hornfels-orbicules occurred sporadically are in $1,700m^2$ area of the locality of orbicular hornfels in the Taejongdae Formation. Orbicules in felsite porphyry might have originated by diffusion reaction between xenoliths and a quiescent zone in felsite porphyry magma. Those are of igneous, primary, and syngenetic origin.

  • PDF

Geomorphology and Volcaniclastic Deposits around Dokdo: Dokdo Caldera

  • Chun, Jong-Hwa;Cheong, Dae-Kyo;Park, Chan-Hong;Huh, Sik;Han, Sang-Joon
    • Ocean and Polar Research
    • /
    • v.24 no.4
    • /
    • pp.483-490
    • /
    • 2002
  • Detailed investigations on both submarine and subaerial volcaniclastic deposits around Dokdo were carried out to identify geomorphologic characteristics, stratigraphy, and associated depositional processes of Dokdo caldera. Dokdo volcano has a gently sloping summit (about 11km in diameter) and relatively steep slope (basal diameter is about 20-25 km) rising above sea level at about 2,270m. We found ragged, elliptical-form of Dokdo caldera with a diameter of about 2km estimated by Chirp (3-11 kHz) sub-bottom profile data and side scan sonar data for the central summit area of Dokdo volcano. We interpreted that the volcaniclastic deposits of Dokdo unconformably consist of the Seodo (west islet) and the Dongdo(east islet) formations based on internal structure, constituent mineral composition, and bedding morphology. The Seodo Formation mainly consisted of massive or inversely graded trachytic breccias (Unit S-I), overlain by fine-grained tuff (Unit S-II), which is probably supplied by mass-wasting processes resulting from Dokdo caldera collapse. The Dongdo Formation consists of alternated units of stratified lapilli tuff and inversely graded basaltic breccia (Unit D-I, Unit D-III, and Unit D-V), and massive to undulatory-bedded basaltic tuff breccias (Unit D-II and Unit D-IV) formed by a repetitive pyroclastic surge and reworking processes. Although, two islets of Dokdo are geographically near each other, they have different formations reflecting their different depositional processes and eruptive stages.

A Study of Hydrogeological Properties Concerning to Groundwater Interference between Wells in the Yeongdo Island, Pusan, Korea (부산직할시 영도지역의 정호간 지하수 간섭에 관한 수리지질 특성 연구)

  • 김항묵
    • Journal of the Korean Professional Engineers Association
    • /
    • v.27 no.6
    • /
    • pp.72-84
    • /
    • 1994
  • This is about an environmental study of groundwater interference by hydrodynamic dispersion between the well A and well C in Dongsam-dong, the Yeongdo Island, Pusan, Korea. The groundwater in the study wells come from the fracture zones deeply seated in welded lapilli rhyodacitic tuff of the Late Cretaceous Yucheon Group. The boring depth at the well A is 190 meters, and the optimal pumping rate of the well A is about 100 cubic meters per day therein. The fractured aquifers in impermeable welded tuff show the conjugate fracturing type and are of anisotropic. The aquifers along two fracture zones in the well A are 80 and 100 meters in depth, respectively. It is not suggested that those fractured aquifers are simply connected between the well A and C. The sea level fluctuation by ebb and high tides in a day is not effective to the groundwater table in the well A. The pumping for 15 days at the well A doesn't give rise to any changes of the groundwater levels in the neighbor well C. The radius of influence of the well A is measured as less than 200 meters. The measuring electric conductivity for the test of salt tracer doesn't testify any relationship between the well A and the well C. There is the main difference between the well A and the well C on the basis of the water analysis of those wells. the well A is located in the high content zone of salt much over the standard value for drinking, whereas the other wells B. C. D are in the low content area of salt below the standard value. It is elucidated for the high content zone of salt in Yeongdo around the well A to have been uplifted over 20 meters.

  • PDF