• Title/Summary/Keyword: lap angle

Search Result 34, Processing Time 0.02 seconds

On the fatigue performance of Aluminum alloy 2024 scarfed lap joints

  • Yan, W.Z.;Gao, H.S.;Yuan, X.;Wang, F.S.;Yue, Z.F.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.35-49
    • /
    • 2012
  • A series of fatigue test were carried out on scarfed lap joints (SLJ) using in airfoil siding to explore the effect of structural details, such as rows of rivets, lap angles, on its fatigue performance. Finite element (FE) analysis was employed to explore the effect of lap angle on load transfer and the stress evolution around the rivet hole. At last, the fatigue lives were predicted by nominal stress approach and critical plane approach. Both of the test results and predicted results showed that fatigue life of SLJ was remarkably increased after introducing lap angle into the faying surface. Specimen with the lap angle of $1.68^{\circ}$ exhibits the best fatigue performance in the present study.

Analysis of Forefoot Bending Angle in Sprint Spikes According to Bobsleigh Start Lap Time for Development of Korean-Specific Bobsledding Shoes

  • Park, Seungbum;Lee, Kyungdeuk;Kim, Daewoong;Yoo, Junghyeon;Jung, Jaemin;Park, Kyunghwan;Park, Sungwon;Kim, Jinhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.315-321
    • /
    • 2016
  • Objective: The aim of this study was to analyze effects of the toe-spring angle of bobsleigh shoes on start speed lap time to develop Korean-specific bobsled shoes suitable for winter environments and for domestic players on the basis of sports science and optimized biomechanical performance. Method: Seven Korean bobsleigh athletes participated in this study, with three pairs of sprint spikes from three companies (Type A, Type B, Type C). To analyze sprint lap time and forefoot bending angle for each shoe, participants were instructed to drag a sled 15 meters from the start line at a maximum sprint. forefoot bending angle was collected by a high speed camera, and lap time speed was measured. Results: Lap time for type B shoes was $3.52{\pm}0.17sec$, type A was $3.55{\pm}0.19sec$, and type C was $3.56{\pm}0.18sec$. Forefoot bending angles were: angle 1, $6.88{\pm}5.55^{\circ}$; angle 2, $9.23{\pm}6.38^{\circ}$; angle 3, $15.56{\pm}5.39^{\circ}$; angle 4, $9.54{\pm}3.85^{\circ}$; angle 5, $9.22{\pm}5.08^{\circ}$; angle 6, $7.66{\pm}6.44^{\circ}$; and angle 7, $4.30{\pm}6.24^{\circ}$ (p<.001). Forefoot bending in angle 3 was as follows: type A, $16.47{\pm}6.01^{\circ}$; type B, $14.30{\pm}4.96^{\circ}$; and type C, $15.90{\pm}5.17^{\circ}$. Conclusion: Hard outsoles and midsoles are better than soft type for reduced start lap time when developing a prototype Korean bobsled shoe.

Analysis of the Body Segment Kinematics by Lap Time during Men's 5,000m Racing (남자 5000M 경주 시 순위에 따른 랩 타임별 운동학적 변인 분석)

  • Chung, Nam-Ju
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.197-207
    • /
    • 2005
  • The purpose of this study was to investigate the body segment kinematics by lap time during men's 5,000m racing. The subjects in this study were 4 male athletics who take part in the competition. The two dimension motion analysis with DLT(direct linear transformation) method was executed using digital video cameras. The following conclusion was that : It was shown that top ranking in a competition is continuous race pattern and the last Lap time is the most fast. It was shown that top ranking in a competition is continuos the stride length and it was the largest in the last Lap time. It was shown that according to the passing Lap time trunk frontal angle was decreasing and shoulder angle was continuous.

Fatigue Strength Evaluation on the IB-Type Spot Welded Lap Joint of 304 Stainless Steel Part 2 : Strain energy Density (304 스테인레스 박강판 IB형 용접이음재의 피로강도 평가 Part 2 : 변형에너지 밀도에 의한 평가)

  • 손일선;오세빈;배동호
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.32-37
    • /
    • 1999
  • Since stainless steel plates have good mechanical properties, weldability, appearance and resistance of corrosion, these are traditionally used for vehicles such as the bus and the train. And they are mainly fabricated by spot welding. But fatigue strength of their spot welded joint is considerably influenced by welding conditions as well as geometrical factors. Thus a reasonable and systematic criterion for long life design of spot welded body structure must be established. In this report, strain energy density was analyzed by using 3-dimensional finite element model about the IB-type spot welded lap joint under tension-shear load. Fatigue tests were conducted on them having various thickness, joint angle, lapped length and width. From their results, it was found that fatigue strength of the IB-type spot welded lap joints could be effectively and systematically rearranged by strain energy density at the edge of nugget.

  • PDF

Fatigue Strength Evaluation on the IB-Type Spot-welded Lap Joint of 304 Stainless Steel Part 1 : Maximum Principal Stress (304 스테인리스 박강판 IB형 점용접이음재의 피로강도 평가 Part 1 : 최대 주응력에 의한 평가)

  • 손일선;오세빈;배동호
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.25-31
    • /
    • 1999
  • Stainless steel sheets are commonly used for vehicles such as the bus and the train. These are mainly fabricated by spot-welding. By the way, its fatigue strength is lower than base metal due to high stress concentration at the nugget. edge of the spot-welding. By the way, its fatigue strength is lower than base metal due to high stress concentration at the nugget edge of the spot-welding point. Especially, it is influenced by welding conditions as well as geometrical factors of spot welded joint. Therefore, it is not too much to say that structural rigidity and strength of spot-welded structures is decided by fatigue strength of spot welded lap joint. Thus, it is necessary to establish a reasonable and systematic long life design criterion for the spot-welded structure. In this study, numerical stress analysis was performed by using 3-dimensional finite element model on IB-type spot-welded lap joint of 304 stainless steel sheet under tension-shear load. Fatigue tests were also conducted on them having various thickness, joint angle, lapped length, and width of the plate. From the results, it was found that fatigue strength of IB-type spot-welded lap joints was influenced by its geometrical factors, however, could be systematically rearranged by maximum principal stress ({TEX}$σ_{1max}${/TEX}) at the nugget edge of the spot-welding point.

  • PDF

Static Strength of Composite Single-lap Joints Using I-fiber Stitching Process with different Stitching Pattern and Angle (I-fiber Stitching 공법을 적용한 복합재료 Single-lap Joint의 Stitching 패턴과 각도에 따른 정적 강도 연구)

  • Song, Sang-Hoon;Back, Joong-Tak;An, Woo-Jin;Choi, Jin-Ho
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.296-301
    • /
    • 2020
  • Laminated composite materials have excellent in-plane properties, but are vulnerable in thickness directions, making it easy to delamination when bending and torsion loads are applied. Thickness directional reinforcement methods of composite materials that delay delamination include Z-pinning, Stitching, Tufting, etc., and typically Z-pinning and Stitching method are commonly used. The Z-pinning is reinforcement method by inserting metal or carbon pin in the thickness direction of prepreg, and the conventional stitching process is a method of reinforcing the mechanical properties in the thickness direction by intersecting the upper and lower fibers on the preform. In this paper, I-fiber stitching method, which complement and improve weakness of Z-pinning and Stitching method, was proposed, and the static strength of composite single-lap joints using I-fiber stitching process were evaluated. The single-lap joints were fabricated by a co-curing method using an autoclave vacuum bag process. The thickness of the composite adherend was fixed, and 5 types of specimens were manufactured with varying the stitching pattern (5×5, 7×7) and angle (0°, 45°). From the test, the failure load of the specimen reinforced by the I-fiber stitching process was increased by up to 143% compared to that of specimen without reinforcement.

The effect of retention grooves in Acrylic resin tooth denture base bond (합성수지 인공치와 열중합의치상 Resin의 결합시 인공치에 형성하는 유지공의 효과에 관한 연구)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.9 no.1
    • /
    • pp.51-55
    • /
    • 1987
  • One of the primary advantages of acrylic resin teeth is their ability to bond chemically to the denture base resins. Fracture od acrylic resin teeth from a maxillary denture, however, is not uncommon. Bonding failures have been attributed to faulty boil-out procedures that fail to eliminate all traces of wax from the ridge lap surfaces of the teeth and to contamination of the ridge lap surface by careless application of tinfoil substitute. Attempts to increase the strength of the bond between acrylic resin teeth and heat-cured denture base resin include grinding the glossy ridge lap surface (in fluid system), painting the ridgelap surface of the teeth with monomer-polymer solution, and cutting retention grooves in the ridge lap surface of the teeth. This latter method has been tested by applying a tensile force in a labial direction to the incisal part of the lingual surface of the acrylic resin teeth. A progressive shear compressive load was applied at an angle to the lingual surface of acrylic resin teeth bonded to denture base acrylic resin. No statistically singificant advantage was derived by preparing retention grooves of different shapes in the ridgelap surface of the denture teeth.

  • PDF

Effect of Aluminum Treatment by Plasma on the Bonding Strength Between Aluminum and CFRP Composites (플라즈마를 적용한 알루미늄의 표면처리가 알루미늄/CFRP 복합재의 접합강도에 미치는 영향)

  • Lee, Gyeong-Yeop;Yang, Jun-Ho;Choe, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1981-1987
    • /
    • 2001
  • This paper documents the effect of surface treatment of aluminum on the bonding strength of aluminum/CFRP composites. The surface of aluminum panel was treated by DC plasma. The optimal treatment condition of the aluminum was determined by measuring the contact angle and T-peel strength as functions of mixture ratio of acetylene gas to nitrogen gas. The mixture ratios used were 1:9, 3:7, 5:5, 7:3, and 9:1 Lap shear tests and T-peel tests were performed using surface-treated alumiunm/CFRP composites and regular alumiunm/CFRP composites. The results showed that the contact angle was minimized and the T-peel strength was maximized iota the mixture ratio of 5:5. The results also showed that the shear strength of surface-treated alumiunm/CFRP composites was 34% greater than that of regular alumiunm/CFRP composites. The T-peel strength of surface-treated alumiunm/CFRP composites was also 5 times greater than that of regular alumiunm/CFRP composites.

Experimental Assessment of Bolted Single Lap Joint Strength for Laminates in Advanced Composite Materials (첨단복합재료 적층판의 볼트단일접합 강도 시험적 평가)

  • Lee, Myoung Keon;Lee, Jeong Won;Yoon, Dong Hyun;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.983-989
    • /
    • 2017
  • This paper presents the bearing strength for laminates in advanced composite materials in bolted joints. Bolted single lap joint tests were experimentally investigated with respect to stabilized and unstabilized lap joints. Stabilized bolted single lap joints refer to joints with out-of-plane rotational constraints. Unstabilized bolted single lap joints refer to joints with absence of out-of-plane deflection constraints. The bearing strength values of laminates in the bolted joint showed that the percentages of ply angle for 0, 45, -45, and 90 degrees were not affected. The bearing strength value in the unstabilized bolted joint was smaller than the bearing strength value in the stabilized bolted joint because of the influence of the out-of-plane behavior. The composite material studied in this paper is a carbon/epoxy unidirectional (UD) tape prepreg cured at $177^{\circ}C(350^{\circ}F)$. In the laminate reference system, the standard angles of 0, 45, -45, and 90 degrees were used for ply orientation within the laminate. A total of 112 bolted single lap joint tests were conducted on specimens from eight distinct laminates. The ASTM-D-5961M standards were adhered to for the stabilized and unstabilized bolted single lap joint tests.

Surface Composition Change of UV/Ozone Modified Polypropylene (UV/오존에 의해 개질된 폴리프로필렌의 표면 조성 변화)

  • Kim, J.I.;Ryu, S.H.
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.49-56
    • /
    • 2002
  • Polypropylene is oxidized with UV/ozone as a function of UV treatment time and ozone flow rate and its surface characteristics are investigated using contart angle measurements and XPS. The aging behavior of oxidized surface is investigated under air, water and ethylene glycol as the aging media. Adhesion strength is also investigated using a lap shear test. Polar surface energy increases with increasing UV/ozone treatment time as well as ozone flow rate. No polar surface energy change is observed under water aging, while under air aging it decreases significantly within 2-3 days and reaches the close value as that of the untreated PP. Adhesion strength increases with increasing UV/ozone treatment time as well as ozone flow rate.