• Title/Summary/Keyword: langmuir model

Search Result 534, Processing Time 0.025 seconds

A study on the deposition of DLC films by magnetron PECVD (Magnetron PECVD에 의한 DLC 박막의 제작에 관한 연구)

  • Kim, Soung-Young;Lee, Jai-Sung;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1446-1449
    • /
    • 1996
  • Thin films of diamond-like carbon(DLC) have been deposited using a magnetron plasma-enhanced chemical vapor deposition(PECVD) method with an rf(13.56 MHz) plasma of $C_{3}H_{8}$. From the Langmuir probe I-V characteristics, it can be observed that increasing the magnetic field yields an increase of the temperature($T_e$) and density($N_e$) of electron. At a magnetic field of 82 Gauss, the estimated values of $T_e$ and $N_e$ are approximately $1.5\;{\times}\;10^5$ K(13.5 eV) and $1.3\;{\times}\;10^{11}\;cm^{-3}$, respectively. Such a highly dense plasma can be attributed to the enhanced ionization caused by the cyclotron motion of electrons in the presence of a magnetic field. On the other hand, the negative dc self-bias voltage($-V_{sb}$) decreases with an increasing magnetic field, which is irrespective of gas pressure in the range of $1{\sim}7$ mTorr. This result is well explained by a theoretical model considering the variation of $T_e$. Deposition rates of DLC films increases with a magnetic field. This may be due to the increased mean free path of electrons in the magnetron plasma. Structures of DLC films are examined by using various techniques such as FTIR and Raman spectroscopy. Most of hydrocarbon bonds in DLC films prepared consist of $sp^3$ tetrahedral bonds. Increasing the rf power leads to an enhancement of cross-linking of carbon atoms in DLC films. At approximately 140 W, the maximum film density obtained is about 2.4 $g/cm^3$.

  • PDF

Adsorption Equilibrium, Kinetic and Thermodynamic Param (활성탄을 이용한 Acid Green 27의 흡착평형, 동역학 및 열역학 파라미터의 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.514-519
    • /
    • 2017
  • Adsorption characteristics of acid green 27 dye using activated carbon were investigated as function of adsorbent dose, pH, initial concentration, contact time and temperature. Freundlich isotherm explained adsorption of acid green 27 dye very well and Freundlich separation factors (1/n=0.293~0.387) were found that this process could be employed as effective treatment method. Kinetic studies showed that the kinetic data were well described by the pseudo second-order kinetic model. Pseudo second rate constant ($k_2$) decreased with the increase in initial acid green 27 concentration. Activation energy (10.457 kJ/mol) and enthalpy (79.946 kJ/mol) indicated that adsorption process was physisorption and endothermic. Since Gibbs free energy decreased with increasing temperature, spontaneity of adsorption reaction increased with increasing temperature in the temperature range of 298 K~318 K.

Characterization of Bottom Ash as an Adsorbent of Lead from Aqueous Solutions

  • Gorme, Joan B.;Maniquiz, Marla C.;Kim, Soon-Seok;Son, Young-Gyu;Kim, Yun-Tae;Kim, Lee-Hyung
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.207-213
    • /
    • 2010
  • This study investigated the potential of using bottom ash to be used as an adsorbent for the removal of lead (Pb) from aqueous solutions. The physical and chemical characteristics of bottom ash were determined, with a series of leaching and adsorption experiments performed to evaluate the suitability of bottom ash as an adsorbent material. Trace elements were present, such as silicon and aluminum, indicating that the material had a good adsorption capacity. All heavy metals leached during the Korea standard leaching test (KSLT) passed the regulatory limits for safe disposal, while batch adsorption experiments showed that bottom ash was capable of adsorbing Pb (experimental $q_e$ = 0.05 mg/g), wherein the adsorption rate increased with decreasing particle size. The adsorption data were then fitted to kinetic models, including Lagergren first-order and Pseudo-second order, as well as the Elovich equation, and isotherm models, including the Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The results showed that pseudo-second order kinetics was the most suitable model for describing the kinetic adsorption, while the Freundlich isotherm best represented the equilibrium sorption onto bottom ash. The maximum sorption capacity and energy of adsorption of bottom ash were 0.315 mg/g and 7.01 KJ/mol, respectively.

Degradation and mineralization of violet-3B dye using C-N-codoped TiO2 photocatalyst

  • Putri, Reza Audina;Safni, Safni;Jamarun, Novesar;Septiani, Upita;Kim, Moon-Kyung;Zoh, Kyung-Duk
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.529-535
    • /
    • 2020
  • The present study investigated the photodegradation of synthetic organic dye; violet-3B, without and with the addition of C-N-codoped TiO2 catalyst using a visible halogen-lamp as a light source. The catalyst was synthesized by using a peroxo sol-gel method with free-organic solvent. The effects of initial dye concentration, catalyst dosage, and pH solution on the photodegradation of violet-3B were examined. The efficiency of the photodegradation process for violet-3B dye was higher at neutral to less acidic pH. The kinetics reaction rate of photodegradation of violet-3B dye with the addition of C-N-codoped TiO2 followed pseudo-first order kinetics represented by the Langmuir-Hinshelwood model, and increasing the initial concentration of dyes decreased rate constants of photodegradation. Photodegradation of 5 mg L-1 violet-3B dye achieved 96% color removal within 240 min of irradiation in the presence of C-N-codoped TiO2 catalyst, and approximately 44% TOC was removed as a result of the mineralization.

Modeling of $NH_3$-SCR Diesel $NO_x$ Reduction and Effects of $NO_2/NO_x,\;NH_3$/NO Ratios on the De-$NO_x$ Efficiency ($NH_3$-SCR 방법에 의한 디젤기관의 $NO_x$ 저감과정의 모델링 및 $NO_2/NO_x,\;NH_3$/NO비에 따른 저감효율 변화 해석)

  • Jung, Seung-Chai;Yoon, Woong-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.179-187
    • /
    • 2008
  • A mathematical modeling of $NO_x$ reduction in $NH_3$-SCR process is conducted. The present deterministic model solves one-dimensional conservation equations of mass and species concentrations for channel flows and the catalytic reaction. NO and NO_2$ reactions by the vanadium catalyst in the presence of $NH_3$ are calculated with the rate expressions of Langmuir-Hinshelwood scheme. The modeling was validated with extensive empirical data regarding $NO_x$ reduction efficiency. Analysis of De-$NO_x$ sensitivity conducted with regard to oxygen and water yielded highly accurate prediction over a wide range of $NO_2/NO_x$ ratios from 0 to 1 in a temperature range of $200^{\circ}C{\sim}550^{\circ}C$. The $NO_x$ reduction largely depends on $NO_2/NO_x$ ratio at temperatures lower than $300^{\circ}C$. NO reduction efficiency is significantly augmented with increasing in $NH_3$/NO ratio at higher temperatures, whereas rather insensitive to the $NH_3$/NO ratio at lower temperatures.

Column filled with Fe-GAC and GAC to remove both As(V) and Fe(III) (비소와 철 동시제거를 위한 Fe-GAC와 GAC로 충진된 컬럼)

  • Lee, Yong-Soo;Do, Si-Hyun;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.87-97
    • /
    • 2016
  • First of all, Fe or/and Mn immobilized granular activated carbons (Fe-GAC, Mn-GAC, (Fe, Mn)-GAC) were synthesized and tested to remove arsenate (As(V)). The results in batch test indicated that Fe-GAC removed As(V) effectively, even though the surface area of Fe-GAC was reduced largely. Moreover, adsorption isotherm test indicated that the experimental data fit well with Langmuir model and the maximum adsorption capacity ($q_{max}$) of Fe-GAC for As(V) was $3.49mg\;g^{-1}$, which was higher than GAC ($2.24mg\;g^{-1}$). In column test, the simulated water, which consisted of As(V), Fe(III), Mn(II) and Ca(II) in tap water, was used. Fe-GAC column with 1 hr of pre-washing time treated As(V) effectively while GAC column removed Fe(III) better than Fe-GAC column. Moreover, the increasing pre-washing time from 1 to 9 hour in Fe-GAC column enhanced Fe(III) removal with little negative impact of As(V) removal. Mostly, the column filled with Fe-GAC and GAC (i.e. the mass ratio of Fe-GAC:GAC = 2:8) showed the higher treatability of both As(V) and Fe(III), even it operated with 1 hr pre-washing time.

원자층 식각을 이용한 Sub-32 nm Metal Gate/High-k Dielectric CMOSFETs의 저손상 식각공정 개발에 관한 연구

  • Min, Gyeong-Seok;Kim, Chan-Gyu;Kim, Jong-Gyu;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.463-463
    • /
    • 2012
  • ITRS (international technology roadmap for semiconductors)에 따르면 MOS(metal-oxide-semiconductor)의 CD (critical dimension)가 45 nm node이하로 줄어들면서 poly-Si/$SiO_2$를 대체할 수 있는 poly-Si/metal gate/high-k dielectric이 대두된다고 보고하고 있다. 일반적으로 high-k dielectric를 식각시 anisotropic 한 식각 형상을 형성시키기 위해서 plasma를 이용한 RIE (reactive ion etching)를 사용하고 있지만 PIDs (plasma induced damages)의 하나인 PIED (plasma induced edge damage)의 발생이 문제가 되고 있다. PIED의 원인으로 plasma의 direct interaction을 발생시켜 gate oxide의 edge에 trap을 형성시키므로 그 결과 소자 특성 저하가 보고되고 있다. 그러므로 본 연구에서는 이에 차세대 MOS의 high-k dielectric의 식각공정에 HDP (high density plasma)의 ICP (inductively coupled plasma) source를 이용한 원자층 식각 장비를 사용하여 PIED를 줄일 수 있는 새로운 식각 공정에 대한 연구를 하였다. One-monolayer 식각을 위한 1 cycle의 원자층 식각은 총 4 steps으로 구성 되어 있다. 첫 번째 step은 Langmuir isotherm에 의하여 표면에 highly reactant atoms이나 molecules을 chemically adsorption을 시킨다. 두 번째 step은 purge 시킨다. 세 번째 step은 ion source를 이용하여 발생시킨 Ar low energetic beam으로 표면에 chemically adsorbed compounds를 desorption 시킨다. 네 번째 step은 purge 시킨다. 결과적으로 self limited 한 식각이 이루어짐을 볼 수 있었다. 실제 공정을 MOS의 high-k dielectric에 적용시켜 metal gate/high-k dielectric CMOSFETs의 NCSU (North Carolina State University) CVC model로 구한 EOT (equivalent oxide thickness)는 변화가 없으면서 mos parameter인 Ion/Ioff ratio의 증가를 볼 수 있었다. 그 원인으로 XPS (X-ray photoelectron spectroscopy)로 gate oxide의 atomic percentage의 분석 결과 식각 중 발생하는 gate oxide의 edge에 trap의 감소로 기인함을 확인할 수 있었다.

  • PDF

CF4/Ar 유도결합플라즈마의 저 유전상수 SiCOH 박막 식각에 미치는 RF 파워의 영향

  • Kim, Hun-Bae;O, Hyo-Jin;Lee, Chae-Min;Ha, Myeong-Hun;Park, Ji-Su;Park, Dae-Won;Jeong, Dong-Geun;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.402-402
    • /
    • 2012
  • 최근 반도체 공정 중 fluorocarbon (CxHyFz) 가스와 함께 플라즈마 밀도가 큰 유도결합형 플라즈마을 사용한 식각장비가 많이 사용되고 있다. 특히 저 유전상수 값을 가지는 박막을 밀도가 큰 플라즈마와 함께 fluorocarbon 가스를 이용하여 식각을 하게 되면 매우 복잡한 현상이 생긴다. 따라서 식각률에 대한 모델을 세우고 적용하는 일이 매우 어렵다. 본 연구에서는 CF4가스를 Ar가스와 함께 혼합하고 기판 플라즈마와 유도결합형 플라즈마를 동시에 가진 식각장비를 사용하여, 저 유전상수 값을 갖는 박막을 식각하였다. 또한, 간단한 식각모델인 Langmuir adsorption model를 이용하여 식각률(Etch rate)에 대한 합리적인 이해를 얻기 위해, 기판과 유도결합형 플라즈마의 파워에 따른 식각률을 계산하고, 식각모델에서 사용되는 매개변수인 이온플럭스(Ion Flux)와 식각수율(Etch yield)을 연구하였다. 기판의 플라즈마 파워가 20에서 100 W 증가하면서 식각률이 269에서 478 nm/min로 증가하였으며, 식각수율이 0.4에서 0.59로 증가하는 것을 관찰하였다. 반면에 기판의 플라즈마 파워 증가에 따라 이온 플럭스는 3.8에서 $4.7mA/cm^2$로 변화가 크지 않았다. 또한, 유도결합형 플라즈마의 파워가 100에서 500 W 증가하면서, 식각률이 117에서 563 nm/min로 증가하였으며, 이온플럭스가 1.5에서 $6.8mA/cm^2$으로 변화하였다. 그러나, 식각수율은 0.46에서 0.48로 거의 변화하지 않았다. 그러므로 저 유전상수 값을 가지는 박막 식각의 경우, 기판의 플라즈마는 식각수율을 증가시키며 유도결합형 플라즈마는 이온 플럭스를 증가시켜 박막 식각에 기여하는 것으로 사료된다.

  • PDF

Adsorption Isotherms of 2-deoxyuridine (dUrd) and 2-deoxycytidine (dCyd) by Static Method (정적 방법에 의한 2-deoxyuridine(dUrd)과 2-deoxycytidine(dCyd)의 흡착 평형식)

  • Lee, Kwang-Jin;Lee, Sang-Hoon;Row, Kyung-Ho;Um, Byung-Hun
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.111-114
    • /
    • 2008
  • Adsorption isotherm with the most fundamental information related to chromatography process is obtained experimentally. The adsorption isotherm of 2-deoxyuridine (dUrd) and 2-deoxycytidine (dCyd) with ${\mu}$-Bondapak $C_{18}$, static method was adopted in RP-HPLC. The concentrations of mobile and stationary phases were measured with different initial concentrations of dUrd and dCyd, 1, 3, 5, 7, 10 mg/mL, respectively. The adsorption isotherm data were applied by Freundlich, Langmuir, Sips, and Radke-Prausnitz model equations. As a result of the regression analysis, standard error between adsorption isotherm of dUrd and Radke-Prausnitz equation was very low, and adsorption isotherm of dCyd was in an agreement with Sips equation very well.

Immobilization of Keratinolytic Metalloprotease from Chryseobacterium sp. Strain kr6 on Glutaraldehyde-Activated Chitosan

  • Silveira, Silvana T.;Gemelli, Sabrine;Segalin, Jeferson;Brandelli, Adriano
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.818-825
    • /
    • 2012
  • Keratinases are exciting keratin-degrading enzymes; however, there have been relatively few studies on their immobilization. A keratinolytic protease from Chryseobacterium sp. kr6 was purified and its partial sequence determined using mass spectrometry. No significant homology to other microbial peptides in the NCBI database was observed. Certain parameters for immobilization of the purified keratinase on chitosan beads were investigated. The production of the chitosan beads was optimized using factorial design and surface response techniques. The optimum chitosan bead production for protease immobilization was a 20 g/l chitosan solution in acetic acid [1.5% (v/v)], glutaraldehyde ranging from 34 g to 56 g/l, and an activation time between 6 and 10 h. Under these conditions, above 80% of the enzyme was immobilized on the support. The behavior of the keratinase loading on the chitosan beads surface was well described using the Langmuir model. The maximum capacity of the support ($q_m$) and dissociation constant ($K_d$) were estimated as 58.8 U/g and 0.245 U/ml, respectively. The thermal stability of the immobilized enzyme was also improved around 2-fold, when compared with that of the free enzyme, after 30 min at $65^{\circ}C$. In addition, the activity of the immobilized enzyme remained at 63.4% after it was reused five times. Thus, the immobilized enzyme exhibited an improved thermal stability and remained active after several uses.