This paper presents a novel algorithm in order to extract lane-related information based on machine vision techniques. The algorithm makes up for the weak points of the former method, the Edge Distribution Function(EDF)-based approach, by introducing a Lane Boundary Pixel Extractor (LBPE) and the well-known Hough Transform(HT). The LBPE that serves as a filter to extract pixels expected to be on lane boundaries enhances the robustness of machine vision, and provides its results to the HT implementation and EDF construction. The HT forms the accumulator arrays and extracts the lane-related parameters composed of orientation and distance. Furthermore, as the histogram of edge magnitude with respect to edge orientation angle, the EDF has peaks at the orientations corresponding to lane slopes on the perspective image domain. Therefore, by fusing the results from the EDF and the HT the proposed algorithm improves the confidence of the extracted lane-related information. The system shows successful results under various degrees of illumination.
The purpose of this paper is two-fold: 1) A novel algorithm in order to extract lane-related information from road images is presented; 2) Design specifications of an image processing onboard unit capable of extracting lanerelated information in real-time is also presented. Obtaining precise information from road images requires many features due to the effects of noise that eventually leads to long processing time. By exploiting a FPGA and DSP, we solve the problem of real-time processing. Due to the fact that image processing of road images relies largely on edge features, the FPGA is adopted in the hardware design. The schematic configuration of the FPGA is optimized in order to perform 3 $\times$ 3 Sobel edge extraction. The DSP carries out high-level image processing of recognition, decision, estimation, etc. The proposed algorithm uses edge features to define an Edge Distribution Function (EDF), which is a histogram of edge magnitude with respect to the edge orientation angle. The EDF enables the edge-related information and lane-related to be connected. The performance of the proposed system is verified through the extraction of lane-related information. The experimental results show the robustness of the proposed algorithm and a processing speed of more than 25 frames per second, which is considered quite successful.
In this paper, we propose an approach to identify the driving environment for intelligent highway vehicles by means of image processing and computer vision techniques. The proposed approach mainly consists of two consecutive computational steps. The first step is the lane marking detection, which is used to identify the location of the host vehicle and road geometry. In this step, related standard image processing techniques are adapted for lane-related information. In the second step, by using the output from the first step, a four-stage algorithm for vehicle detection is proposed to provide information on the relative position and speed between the host vehicle and each preceding vehicle. The proposed approach has been validated in several real-world scenarios. Herein, experimental results indicate low false alarm and low false dismissal and have demonstrated the robustness of the proposed detection approach.
This paper presents a lane-departure identification (LDI) algorithm for a traveling vehicle on a structured road. The algorithm makes up for the weak points of the former method based on EDF[1] by introducing a Lane Boundary Pixel Extractor (LBPE), the well known Hough transform, and liner regression. As a filter to extract pixels expected to be on lane boundaries, the LBPE plays an important role in enhancing the robustness of LDI. Utilizing the pixels from the LBPE the Hough transform provides the lane-related parameters composed of orientation and distance, which are used in the LDI. The proposed LDI is based on the fact the lane-related parameters of left and right lane boundaries are symmetrical as for as the optical axis of a camera mounted on a vehicle is coincident with the center of lane; as the axis deviates from the center of lane, the symmetrical property is correspondingly lessened. In addition, the LDI exploits a linear regression of the lane-related parameters of a series of successive images. It plays the key role of determining the trend of a vehicle's traveling direction and minimizing the noise effect. Except for the two lane-related parameters, the proposed algorithm does not use other information such as lane width, a curvature, time to lane crossing, and of feet between the center of a lane and the optical axis of a camera. The system performed successfully under various degrees of illumination and on various road types.
This paper proposes an image processing algorithm for detecting obstacles on road-lane using DLI(disparity of lane-related information) that is generated by stereo images acquired from dual cameras mounted on a moving vehicle. The DLI is a disparity that is acquired using single lane information from road lane detection. For the purpose to reduce processing time, we use small blocks obtained by edge-histogram based blocking logic. This algorithm detects moving objects such as preceding vehicles and obstacles. The proposed algorithm has been implemented in a personal computer with the road image data of a typical highway. We successfully performed experiments under a wide variety of road conditions without changing parameter values or adding human intervention. Experimental results also showed that the proposed DLI is quite successful.
This paper proposes an image processing algorithm for detecting obstacles on road using DLI(disparity of lane-related information) that is generated by stereo images acquired from dual cameras mounted on a moving vehicle. The DLI is a disparity that is acquired using a single lane information from road lane detection. For the purpose to reduce processing time, we use small block of edge-histogram based blocking logic. This algorithm detects moving objects such as preceding vehicles and obstacles. The proposed algorithm has been implemented in a personal computer with the road image data of a typical highway. We successfully performed experiments under a wide variety of road conditions without changing parameter values or adding human intervention. Experimental results also showed that the proposed DLI is quite successful.
We propose a fuzzy neural network (FNN) theory capable of deciding the quality of a road image prior to extracting lane-related information. The accuracy of lane-related information obtained by image processing depends on the quality of the raw images, which can be classified as good or bad according to how visible the lane marks on the images are. Enhancing the accuracy of the information by an image-processing algorithm is limited due to noise corruption which makes image processing difficult. The FNN, on the other hand, decides whether road images are good or bad with respect to the degree of noise corruption. A cumulative distribution function (CDF), a function of edge histogram, is utilized to extract input parameters from the FNN according to the fact that the shape of the CDF is deeply correlated to the road image quality. A suitability analysis shows that this deep correlation exists between the parameters and the image quality. The input pattern vector of the FNN consists of nine parameters in which eight parameters are from the CDF and one is from the intensity distribution of raw images. Experimental results showed that the proposed FNN system was quite successful. We carried out simulations with real images taken in various lighting and weather conditions, and obtained successful decision-making about $99\%$ of the time.
This paper presents a novel algorithm for nighttime detection of the lane markers painted on a road at night. First of all, the proposed algorithm uses neighborhood average filtering, 8-directional Sobel operator and thresholding segmentation based on OTSU's to handle raw lane images taken from a digital CCD camera. Secondly, combining intensity map and gradient map, we analyze the distribution features of pixels on boundaries of lanes in the nighttime and construct 4 feature sets for these points, which are helpful to supply with sufficient data related to lane boundaries to detect lane markers much more robustly. Then, the searching method in multiple directions- horizontal, vertical and diagonal directions, is conducted to eliminate the noise points on lane boundaries. Adapted Hough transformation is utilized to obtain the feature parameters related to the lane edge. The proposed algorithm can not only significantly improve detection performance for the lane marker, but it requires less computational power. Finally, the algorithm is proved to be reliable and robust in lane detection in a nighttime scenario.
본 논문에서는 주행하는 차량에 탑재된 카메라에서 획득한 도로 영상에서 차선의 색상을 판별하는 방법을 제안하였다. 자동차의 자율주행기술에 있어 차선 정보는 차선이탈방지(ldws), 능동적 차선유지(lkas), 고속도로주행보조(hda) 등의 자율주행의 레벨(level)이 올라갈수록 중요하다. 특히 차선의 색상, 특히 흰색 및 황색 차선의 구별은 교통사고와 직접적인 관련이 있는 정보이기에 더욱 필요한 기술이다. 본 논문에서는 주행 차선 검출 결과를 기반으로 차선 및 도로의 관심 영역을 추출하고 각 영역의 컬러 정보를 2차원 S-색상 공간으로 투영하였다. S-공간에 투영된 색상의 특징 분포에서 개선된 mean-shift 알고리즘을 이용하여 특징의 무게중심을 구하였다. 좌, 우 차선과 도로영역의 색상특징의 중심점들 사이의 거리 정보를 이용하여 차선의 색상을 판별하였다. 다양한 조명환경에서 약 97%의 색상 인식 성공률을 보였다.
The confidence of information from image processing depends on the original image quality. Enhancing the confidence by an algorithm has an essential limitation. Especially, road images are exposed to lots of noisy sources, which makes image processing difficult. We, in this paper, propose a FNN (fuzzy-neural network) capable oi deciding the quality of a road image prior to extracting lane-related information. According to the decision by the FNN, road images are classified into good or bad to extract lane-related information. A CDF (cumulative distribution function), a function of edge histogram, is utilized to construct input parameters of the FNN, it is based on the fact that the shape of the CDF and the image quality has large correlation. Input pattern vector to the FNN consists of ten parameters in which nine parameters are from the CDF and the other one is from intensity distribution of raw image. Correlation analysis shows that each parameter represents the image quality well. According to the experimental results, the proposed FNN system was quite successful. We carried out simulations with real images taken by various lighting and weather conditions and achieved about 99% successful decision-making.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.