• Title/Summary/Keyword: landslides prediction map

Search Result 26, Processing Time 0.028 seconds

Prediction of Landslide around Stone Relics of Jinjeon-saji Area (진전사지 석조문화재 주변의 산사태예측)

  • Kim, Kyeong-Su;Lee, Choon-Oh;Song, Young-Suk;Cho, Yong-Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1378-1385
    • /
    • 2008
  • The probability of landslide hazards was predicted to natural terrain around the stone relics of Jinjeon-saji area, which is located in Yangyang, Kangwon Province. As the analysis results of field investigation, laboratory test and geology and geomorphology data, the effect factors of landslides occurrence were evaluated, and then the landslides prediction map was made up by use of prediction model considering the effect factors. The susceptibility of stone relics induced by landslides was investigated as the grading classification of occurrence probability using the landslides prediction map. In the landslides prediction map, the high probability area of landslides over 70% of occurrence probability was 3,489m3, which was 10.1% of total prediction area. If landslides are occurred at the high elevation area, the three stories stone pagoda of Jinjeon-saji (National treasure No.122) and the stone lantern of Jinjeon-saji (Treasure No.439) will be collapsed by debris flow.

  • PDF

Analysis of Slope Hazard Probability around Jinjeon-saji Area located in Stone Relics (석조문화재가 위치한 진전사지 주변의 사면재해 가능성 분석)

  • Kim, Kyeong-Su;Song, Young-Suk;Cho, Yong-Chan;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.303-309
    • /
    • 2008
  • A probability of slope hazards was predicted at a natural terrain around the stone relics of Jinjeon-saji area, which is located in Yangyang, Kangwon Province. As the analyzing results of field investigation, laboratory test and geology and geomorphology data, the effect factors of landslides occurrence were evaluated. Also, the landslides prediction map was made up using the prediction model by the effect factors. The landslide susceptibility of stone relics was investigated as the grading classification of occurrence probability. In the landslides prediction map, the high probability area was $3,489m^2$ and it was 10.1% of total prediction area. The high probability area has over 70% of occurrence probability. If landslides are occurred at the predicted area, the three stories stone pagoda of Jinjeon-saji(National treasure No. 122) and the stone lantern of Jinjeon-saji(Treasure No.439) will be collapsed by debris flow.

Prediction of potential Landslide Sites Using GIS (지리정보시스템에 기반한 산지재해 예측)

  • Cha, Kyung Seob;Kim, Tae Hoon;Kim, Young Jin
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.4
    • /
    • pp.57-64
    • /
    • 2008
  • Korea has been suffered from serious damages of lives and properties, due to landslides that are triggered by heavy rains in every monsoon season. This study developed the physically based landslide prediction model which consists of 3 parts, such as slope stability analysis model, groundwater flow model and soil depth model. To evaluate its applicability to the prediction of landslides, the data of actual landslides were plotted on the areas predicted on the GIS map. The matching rate of this model to the actual data was 84.8%. The relation between hydrological and landform factors and potential landslide were analyzed.

  • PDF

Prediction of Potential Landslide Sites Using Determinitstic Model (결정론적 기법을 이용한 산사태 위험지 예측)

  • Cha, Kyung-Seob;Chang, Pyoung-Wuck;Woo, Chull-Woong;Kim, Seong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.37-45
    • /
    • 2005
  • Almost every year, Korea has been suffered from serious damages of lives and properties, due to landslides that are triggered by heavy rains in monsoon season. In this paper, we systematized the physically based landslide prediction model which consisted of 3 parts, infinite slope stability analysis model, groundwater flow model and soil depth model. To evaluate its applicability to the prediction of landslides, the data of actual landslides were plotted on the predicted areas on the GIS map. The matching rate of this model to the actual data was $84.8\%$. And the relation between hydrological and land form factors and potential landslide were analyzed.

Prediction of Landslides Occurrence Probability under Climate Change using MaxEnt Model (MaxEnt 모형을 이용한 기후변화에 따른 산사태 발생가능성 예측)

  • Kim, Hogul;Lee, Dong-Kun;Mo, Yongwon;Kil, Sungho;Park, Chan;Lee, Soojae
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.39-50
    • /
    • 2013
  • Occurrence of landslides has been increasing due to extreme weather events(e.g. heavy rainfall, torrential rains) by climate change. Pyeongchang, Korea had seriously been damaged by landslides caused by a typhoon, Ewiniar in 2006. Moreover, the frequency and intensity of landslides are increasing in summer due to torrential rain. Therefore, risk assessment and adaptation measure is urgently needed to build resilience. To support landslide adaptation measures, this study predicted landslides occurrence using MaxEnt model and suggested susceptibility map of landslides. Precipitation data of RCP 8.5 Climate change scenarios were used to analyze an impact of increase in rainfall in the future. In 2050 and 2090, the probability of landslides occurrence was predicted to increase. These were due to an increase in heavy rainfall and cumulative rainfall. As a result of analysis, factors that has major impact on landslide appeared to be climate factors, prediction accuracy of the model was very high(92%). In the future Pyeongchang will have serious rainfall compare to 2006 and more intense landslides area expected to increase. This study will help to establish adaptation measure against landslides due to heavy rainfall.

Evaluation and Analysis of Gwangwon-do Landslide Susceptibility Using Logistic Regression (로지스틱 회귀분석 기법을 이용한 강원도 산사태 취약성 평가 및 분석)

  • Yeon, Young-Kwang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.4
    • /
    • pp.116-127
    • /
    • 2011
  • This study conducted landslide susceptibility analysis using logistic regression. The performance of prediction model needs to be evaluated considering two aspects such as a goodness of fit and a prediction accuracy. Thus to gain more objective prediction results in this study, the prediction performance of the applied model was evaluated considering two such evaluation aspects. The selected study area is located between Inje-eup and Buk-myeon in the middle of Kwangwon. Landslides in the study area were caused by heavy rain in 2006. Landslide causal factors were extracted from topographic map, forest map and soil map. The evaluation of prediction model was assessed based on the area under the curve of the cumulative gain chart. From the results of experiments, 87.9% in the goodness of fit and 84.8% in the cross validation were evaluated, showing good prediction accuracies and not big difference between the results of the two evaluation methods. The results can be interpreted in terms of the use of environmental factors which are highly related to landslide occurrences and the accuracy of the prediction model.

Mapping Landslide Susceptibility Based on Spatial Prediction Modeling Approach and Quality Assessment (공간예측모형에 기반한 산사태 취약성 지도 작성과 품질 평가)

  • Al, Mamun;Park, Hyun-Su;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.3
    • /
    • pp.53-67
    • /
    • 2019
  • The purpose of this study is to identify the quality of landslide susceptibility in a landslide-prone area (Jinbu-myeon, Gangwon-do, South Korea) by spatial prediction modeling approach and compare the results obtained. For this goal, a landslide inventory map was prepared mainly based on past historical information and aerial photographs analysis (Daum Map, 2008), as well as some field observation. Altogether, 550 landslides were counted at the whole study area. Among them, 182 landslides are debris flow and each group of landslides was constructed in the inventory map separately. Then, the landslide inventory was randomly selected through Excel; 50% landslide was used for model analysis and the remaining 50% was used for validation purpose. Total 12 contributing factors, such as slope, aspect, curvature, topographic wetness index (TWI), elevation, forest type, forest timber diameter, forest crown density, geology, landuse, soil depth, and soil drainage were used in the analysis. Moreover, to find out the co-relation between landslide causative factors and incidents landslide, pixels were divided into several classes and frequency ratio for individual class was extracted. Eventually, six landslide susceptibility maps were constructed using the Bayesian Predictive Discriminant (BPD), Empirical Likelihood Ratio (ELR), and Linear Regression Method (LRM) models based on different category dada. Finally, in the cross validation process, landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract success rate curve. The result showed that Bayesian, likelihood and linear models were of 85.52%, 85.23%, and 83.49% accuracy respectively for total data. Subsequently, in the category of debris flow landslide, results are little better compare with total data and its contained 86.33%, 85.53% and 84.17% accuracy. It means all three models were reasonable methods for landslide susceptibility analysis. The models have proved to produce reliable predictions for regional spatial planning or land-use planning.

Life Risk Assessment of Landslide Disaster Using Spatial Prediction Model (공간 예측 모델을 이용한 산사태 재해의 인명 위험평가)

  • Jang, Dong-Ho;Chung, C.F.
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.373-383
    • /
    • 2006
  • The spatial mapping of risk is very useful data in planning for disaster preparedness. This research presents a methodology for making the landslide life risk map in the Boeun area which had considerable landslide damage following heavy rain in August, 1998. We have developed a three-stage procedure in spatial data analysis not only to estimate the probability of the occurrence of the natural hazardous events but also to evaluate the uncertainty of the estimators of that probability. The three-stage procedure consists of: (i)construction of a hazard prediction map of "future" hazardous events; (ii) validation of prediction results and estimation of the probability of occurrence for each predicted hazard level; and (iii) generation of risk maps with the introduction of human life factors representing assumed or established vulnerability levels by combining the prediction map in the first stage and the estimated probabilities in the second stage with human life data. The significance of the landslide susceptibility map was evaluated by computing a prediction rate curve. It is used that the Bayesian prediction model and the case study results (the landslide susceptibility map and prediction rate curve) can be prepared for prevention of future landslide life risk map. Data from the Bayesian model-based landslide susceptibility map and prediction ratio curves were used together with human rife data to draft future landslide life risk maps. Results reveal that individual pixels had low risks, but the total risk death toll was estimated at 3.14 people. In particular, the dangerous areas involving an estimated 1/100 people were shown to have the highest risk among all research-target areas. Three people were killed in this area when landslides occurred in 1998. Thus, this risk map can deliver factual damage situation prediction to policy decision-makers, and subsequently can be used as useful data in preventing disasters. In particular, drafting of maps on landslide risk in various steps will enable one to forecast the occurrence of disasters.

Analysis and Validation of Geo-environmental Susceptibility for Landslide Occurrences Using Frequency Ratio and Evidential Belief Function - A Case for Landslides in Chuncheon in 2013 - (Frequency Ratio와 Evidential Belief Function을 활용한 산사태 유발에 대한 환경지리적 민감성 분석과 검증 - 2013년 춘천 산사태를 중심으로 -)

  • Lee, Won Young;Sung, Hyo Hyun;Ahn, Sejin;Park, Seon Ki
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.61-89
    • /
    • 2020
  • The objective of this study is to characterize landslide susceptibility depending on various geo-environmental variables as well as to compare the Frequency Ratio (FR) and Evidential Belief Function (EBF) methods for landslide susceptibility analysis of rainfall-induced landslides. In 2013, a total of 259 landslides occurred in Chuncheon, Gangwon Province, South Korea, due to heavy rainfall events with a total cumulative rainfall of 296~721mm in 106~231 hours duration. Landslides data were mapped with better accuracy using the geographic information system (ArcGIS 10.6 version) based on the historic landslide records in Chuncheon from the National Disaster Management System (NDMS), the 2013 landslide investigation report, orthographic images, and aerial photographs. Then the landslides were randomly split into a testing dataset (70%; 181 landslides) and validation dataset (30%; 78 landslides). First, geo-environmental variables were analyzed by using FR and EBF functions for the full data. The most significant factors related to landslides were altitude (100~200m), slope (15~25°), concave plan curvature, high SPI, young timber age, loose timber density, small timber diameter, artificial forests, coniferous forests, soil depth (50~100cm), very well-drained area, sandy loam soil and so on. Second, the landslide susceptibility index was calculated by using selected geo-environmental variables. The model fit and prediction performance were evaluated using the Receiver Operating Characteristic (ROC) curve and the Area Under Curve (AUC) methods. The AUC values of both model fit and prediction performance were 80.5% and 76.3% for FR and 76.6% and 74.9% for EBF respectively. However, the landslide susceptibility index, with classes of 'very high' and 'high', was detected by 73.1% of landslides in the EBF model rather than the FR model (66.7%). Therefore, the EBF can be a promising method for spatial prediction of landslide occurrence, while the FR is still a powerful method for the landslide susceptibility mapping.

Prediction of Potential Landslide Sites Using Deterministic model (결정론적 모형을 이용한 산사태 위험지 예측)

  • Cha, Kyung-Seob;Chang, Pyoung-Wuck;Lee, Haeng-Woo;Nho, Soo-Kack
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.655-662
    • /
    • 2005
  • The objective of this thesis is to develop a prediction system of potential landslide sites to apply to the prevention of landslide disaster which occurred during the heavy rainfall in the rainy season. The system was developed by combining a modified slope stability analysis model and a hydrological model. The modified slope stability analysis model, which was improved from 1-D infinite slope stability analysis model, has been taken into consideration of the flexion of the hill slopes. To evaluate its applicability to the prediction of landslides, the data of actual landslides were plotted on the predicted areas on the GIS map. The matching rate of this model to the actual data was 92.4%. And the relations between wetness index and landform factors and potential landslide were analyzed.

  • PDF