• Title/Summary/Keyword: landslide soil-rock

Search Result 51, Processing Time 0.024 seconds

Prediction and development on technics of landslide prospecting by seismic refraction(PS-1) (소형 탄성파탐사기(PS-1)을 이용한 산사태예지기술개발)

  • 김재헌
    • Journal of the Korean Professional Engineers Association
    • /
    • v.25 no.4
    • /
    • pp.102-108
    • /
    • 1992
  • This study was carried to find out the soil characteristics of landslide site and to develope landslide prediction method by seismic refraction prospecting. For these aims, landslide condition and travel time were investigated at 68 Landslide sites over the country during 1990 to 1991. The results were as follows. 1. The surface of rupture was included mainly in C layer. Its Hardness was less than 3kg / $\textrm{cm}^2$ at the upper pare of landslide. 2. When the profile line length was 20m, the range of travel time was 40 to 90 msec. The travel time did not differ between bedrocks. 3. Refraction distance ranged from 1 to 7m and mean of that was 2.5m. Travel time was increased according to receiving distance without large variance in the refraction distance but that was appeared large variance out of the refraction distance on slope that has shallow soil depth and discontinuous ground surface. Therefore, the spread distance must be shorten to 10-l5m. 4. The seismic velocity at the first layer(layer of rupture) was less than 500m1sec by degree of weathering and the velocity at the second layer decreased in order of Granite> Granitic gneiss >Sedimentary rock. 5. The first layer observed by seismic refraction was contained C layer that has parent material and weathered rocks of hardness 10-20kg/$\textrm{cm}^2$. 6. Among the range of seismic velocity was less than 200m/sec in 63% of the total plots, 200-300m/sec in 34% and 300-500m /sec in 3%. 7. There was a proportional relationship between seismic prospecting soil depth and executive soil depth, and seismic propection soil depth was about 10 to 20cm deeper than the order.

  • PDF

A Study on Slope Stability of Corestone (핵석지반의 사면안정성 연구)

  • 이수곤;금동헌
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.551-558
    • /
    • 2000
  • When cut slope is excavated, corestone in cut slope exists 20∼30%. In case of soil and soft rock mixing, people lay out gradient of 1 : 0.5, because of soft rock slope. In a case, slope that exists corestone between soil happens to large landslide. So, As a study performs geological survey, Analysis of slope stability reinforcement measures, etc, A study presents example meaures and analysis on slope stability of corestone.

  • PDF

Analysis of Landslide Characteristics in Jeonlabuk-do, Korea (전라북도 지역의 산사태발생 특성분석)

  • Park, Chong-Min;Ma, Ho-Seop;Kang, Won-Seok;Oh, Kyeong-Won;Park, Seong-Hak;Lee, Sung-Jae
    • Journal of agriculture & life science
    • /
    • v.44 no.4
    • /
    • pp.9-20
    • /
    • 2010
  • This study was carried out to analyze the landslide characteristics and forest environment factors on the landslide area of Jeonlabuk-do province in korea. The results obtained from this study were summarized as follows; The total number of landslide occurrence was 182 areas. The average area of landslide scar was $1,859m^2$, average length of the landslides was 139m, average width was 13m. The landslides were highly occurred in igneous rock and coniferous. And also, slope gradient was $21{\sim}30^{\circ}$, aspect was NE, altitude was 401~500m, vertical and cross slope was concave (凹),stream order was 1 order, soil depth was 15m below, landslide type was linear, forest type was artificial. The relationship between landslide area and environmental factors was a positive correlation with cross slope (convex), position (upper), altitude (501m), forest type (coniferous), parent rock (sedimentary rock), D.B.H. (over 17cm), but was negative correlation with slope gradient ($31{\sim}40^{\circ}$), parent rock (igneous rock), D.B.H. (6~16cm).

Case study of landslide types in Korea (우리나라 산사태의 형태분류에 따른 사례)

  • 김원영;김경수;채병곤;조용찬
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.18-35
    • /
    • 2000
  • The most dominant type of landslide in Korea is debris flows which mostly take place along mountain slopes during the rainy season, July to August. The landslides have been reported to begin activation when rainfall is more than 200mm within 2days. The debris flows are usually followed by translational slips which occur upper part of mountain slopes and they transit to debris flow as getting down to the valleys. Lithology, location, slope inclination, grain size distribution of soil, permeability, dry density and porosity have been proved as triggering factor causing translational slides. The triggering data taken from mapping are statistically analysed to get landslide potential quantitatively. Rock mass creeps mostly occur on well bedded sedimentary rocks in Kyeongsang Basin. Although the displacement of rock mass creep is relatively small about 1m, the creep can cause severe hazards due to relatively large volume of the involved rock mass. Examples are rock mass creep occurred in the mouth of Hwangryongsan Tunnel, in Chilgok and in Sachon in 1999. Although the direct factor of the creeps are due to slope cutting at the foot area, more attention is required A rotational slide occurring within thick soil formation or weathered rock is also closely related to bottom part of slope cutting. It is propagated circular or semi-circular type. Especially in korea, the rotational slide may be frequently occurred in Tertiary tuff area. Because they are mainly composed of volcanic ash and pyroclastic materials, well developed joints and high degree of swelling and absorption can easily cause the slide. The landslide among the Pohang-Guryongpo national road is belong to this type of slide.

  • PDF

Analysis of Characteristics of Landslide Susceptibility in Rugged Mountain Range in the Korean National Park (산악형 국립공원지역의 산사태 발생과 취약지역 특성 분석)

  • Lee, Sung-Jae;Lee, Eun-Jai;Ma, Ho-Seop
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.552-561
    • /
    • 2019
  • In korea, debris-flow disasters are induced by typhoon and localized torrential rainfall annually. These disasters are particularly severe in the Korean national park due to its geomorphological characteristics. This study was conducted to analyze the landslide characteristics and forest environmental factors of landslide areas located in rugged mountain range in the Korean national park (Mt. Seorak, Mt. Jiri, and Mt. Sobaek). Overall, landslides occurred at 474 sites. The average area of the landslide scar among these sites was 1,212 ㎡. The average landslide sediment was 1,389 ㎥, average landslide length was 75 m, and the average width was 12.9 m. The landslides frequently occurred in regions with igneous rock and coniferous forest. In addition, slope gradient degree (31°-40°), slope gradient direction (N), vertical slope (concave), cross slope (concave), altitude (401-800 m), position (middle), stream order (first order), forest type (mixed), parent rock (igneous), and soil depth (<46 cm). The relationship between landslide soil volume and environmental factors showed positive correlation. The variables of vertical slope (complex), altitude (<1,201 m), and soil depth (<46 cm) correlated significantly at 1 % level.

Development of Investigation and Analysis Technique to Landslides and Its Application (산사태 조사.해석 기법의 개발 및 적용)

  • Kim, Kyeong-Su;Song, Young-Suk;Chae, Byung-Gon;Cho, Yong-Chan;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.69-81
    • /
    • 2008
  • Landslide researches are divided to a method of interrelationship for various factors, method of predicting landslide possibility, and method of estimating landslide risk which are occurring landslides in the natural slope. Most of landslides occurred in natural slope are caused by a heavy rainfall in summer season. Weathered soil layer located in upper side of rock mass was occurred. As well as, they are announced to have an influence to geometry, geology, soil characteristics, and precipitation in the natural slope. In order to investigate and interpret the variety of landslides from field investigation to risk analysis, landslide analysis process due to geotechnical and geological opinions are systematically demanded. In this research, the study area is located in Macheon area, Gyeongsangnam-do and performed the landslide investigation. From the results of landslide investigation and analysis, optimized standard model based on natural landslide is proposed to high technical method of landslide investigation and interpretation.

A Study on Characteristics of Landslides of Debris Flow in Gangwon-do (강원도 토석류 산사태의 특성에 관한 연구)

  • Yoo, Nam-Jae;Jun, Sang-Hyun;Park, Nam-Sun
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.3-10
    • /
    • 2008
  • This paper is to investigate the characteristics of debris flow landslides in Gangwon Province through literature review, data collection and analyses and site investigation. As results of data analyses about landslides occurred currently in this province, the landslide in the form of debris flow is found to be 55 %. Therefore major loss and costs are caused by discharge of soil and rock fragments from landslide. From results of analyzing the geometrical characteristics of landslide, length of most of landslide is less than 200 m, their width is in the range of 10 - 40 m, most of them are know to be occurred in lower elevation than 400 m. Slope angle is in the range of 25 - 35 degrees. Comparing the period of rainfall intensity with the time of landslide being occurred, occurrence of landslide is quite related to duration of a heavy rainfall. For measures of controlling water flow discharge and debris flow, considering geological and topographical ground conditions, appropriate selection and building check dam, erosion control dam and ring net is very beneficial for reducing the loss and costs caused by the landslide of debris flow.

  • PDF

Analysis on Failure Critical Depth of Unsaturated Landslide Zone According to the Geological Condition (지질별 불포화토 사면의 붕괴 임계심도 분석)

  • Nam, Koung-Hoon;Kim, Min-Gyu;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.299-304
    • /
    • 2015
  • Slope stability analysis of unsaturated soil slopes due to rainfall infiltration is an important issue in evaluating landslide analysis and stability assessment. The purpose of this study is to establish the critical depth considering weathered soil of parent rock and rainfall intensity at main scarp in national landslide. Based on the analytical results, it is found that as rainfall duration and Slope angle increased, the critical depth of gneiss-weathered soil increased from 3.00 m to 3.77 m, the critical depth of granite weathered-soil increased from 1.75 m to 2.40 m, and the critical depth of mudstone-weathered soil increased from 3.00 m to 4.15 m, respectively. The critical depth of granite-weathered soil with low cohesion and high internal friction angle is much lower than those of other soils. It is interestingly shown that a decrease in the safety factor is highly significant, much affected by the slope increase rather than the rainfall intensity.

Analysis on Rainfall and Geographical Characteristics of Landslides in Gyeongnam Province (경남지역 산사태 발생지의 강우 및 지형특성분석)

  • Kim, Ki Heung;Jung, Hea Reyn;Park, Jae Hyeon;Ma, Ho Seop
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.2
    • /
    • pp.33-45
    • /
    • 2011
  • The purpose of this study to analyze landslide-triggering factors using the 38 landslide cases occurred by typhoon, Rusa in 2002, Maemi in 2003 and Ewiniar in 2006 and geospatial characteristics in Hamyang and Geochang County. where two day's heavy rainfall was concentrated on. The rainfalls factors to trigger landslides were accumulative rainfall (>230mm) and rainfall intensity(>30-75mm). The highest landslide frequency was concentrated on the areas of 400-900m in height and on the slopes of $25-40^{\circ}$ in degree. The frequency of landslide was high exceedingly above 80% of a slope attitude, while the frequency is very low below 70%. Granite was more susceptible as much as 9 times than metamorphic rocks. In areas mixed soil with gravels and rock blocks, the frequency of landslide was 73%.

Studies on Development of Prediction Model of Landslide Hazard and Its Utilization (산지사면(山地斜面)의 붕괴위험도(崩壞危險度) 예측(豫測)모델의 개발(開發) 및 실용화(實用化) 방안(方案))

  • Ma, Ho-Seop
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.175-190
    • /
    • 1994
  • In order to get fundamental information for prediction of landslide hazard, both forest and site factors affecting slope stability were investigated in many areas of active landslides. Twelve descriptors were identified and quantified to develop the prediction model by multivariate statistical analysis. The main results obtained could be summarized as follows : The main factors influencing a large scale of landslide were shown in order of precipitation, age group of forest trees, altitude, soil texture, slope gradient, position of slope, vegetation, stream order, vertical slope, bed rock, soil depth and aspect. According to partial correlation coefficient, it was shown in order of age group of forest trees, precipitation, soil texture, bed rock, slope gradient, position of slope, altitude, vertical slope, stream order, vegetation, soil depth and aspect. The main factors influencing a landslide occurrence were shown in order of age group of forest trees, altitude, soil texture, slope gradient, precipitation, vertical slope, stream order, bed rock and soil depth. Two prediction models were developed by magnitude and frequency of landslide. Particularly, a prediction method by magnitude of landslide was changed the score for the convenience of use. If the total store of the various factors mark over 9.1636, it is evaluated as a very dangerous area. The mean score of landslide and non-landslide group was 0.1977 and -0.1977, and variance was 0.1100 and 0.1250, respectively. The boundary value between the two groups related to slope stability was -0.02, and its predicted rate of discrimination was 73%. In the score range of the degree of landslide hazard based on the boundary value of discrimination, class A was 0.3132 over, class B was 0.3132 to -0.1050, class C was -0.1050 to -0.4196, class D was -0.4195 below. The rank of landslide hazard could be divided into classes A, B, C and D by the boundary value. In the number of slope, class A was 68, class B was 115, class C was 65, and class D was 52. The rate of landslide occurrence in class A and class B was shown at the hige prediction of 83%. Therefore, dangerous areas selected by the prediction method of landslide could be mapped for land-use planning and criterion of disaster district. And also, it could be applied to an administration index for disaster prevention.

  • PDF