Analysis of Landslide Characteristics in Jeonlabuk-do, Korea

전라북도 지역의 산사태발생 특성분석

  • Park, Chong-Min (Dept. of Forest Resources, Chonbuk Nat'l Univ.) ;
  • Ma, Ho-Seop (Div. of Forest Sci., Gyeongsang Nat'l Univ.(Insti. of Agric. Life Science)) ;
  • Kang, Won-Seok (Div. of Forest Sci., Gyeongsang Nat'l Univ.(Insti. of Agric. Life Science)) ;
  • Oh, Kyeong-Won (Dept. of Forestry, Graduate School, Chonbuk Nat'l Univ.) ;
  • Park, Seong-Hak (Dept. of Forestry, Graduate School, Chonbuk Nat'l Univ.) ;
  • Lee, Sung-Jae (Seoul National University Forest)
  • 박종민 (전북대학교 산림자원학과) ;
  • 마호섭 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 강원석 (경상대학교 환경산림과학부(농업생명과학연구원)) ;
  • 오경원 (전북대학교 대학원 임학과) ;
  • 박성학 (전북대학교 대학원 임학과) ;
  • 이성재 (서울대학교 농업생명과학대학 남부학술림)
  • Received : 2010.04.20
  • Accepted : 2010.08.16
  • Published : 2010.08.31

Abstract

This study was carried out to analyze the landslide characteristics and forest environment factors on the landslide area of Jeonlabuk-do province in korea. The results obtained from this study were summarized as follows; The total number of landslide occurrence was 182 areas. The average area of landslide scar was $1,859m^2$, average length of the landslides was 139m, average width was 13m. The landslides were highly occurred in igneous rock and coniferous. And also, slope gradient was $21{\sim}30^{\circ}$, aspect was NE, altitude was 401~500m, vertical and cross slope was concave (凹),stream order was 1 order, soil depth was 15m below, landslide type was linear, forest type was artificial. The relationship between landslide area and environmental factors was a positive correlation with cross slope (convex), position (upper), altitude (501m), forest type (coniferous), parent rock (sedimentary rock), D.B.H. (over 17cm), but was negative correlation with slope gradient ($31{\sim}40^{\circ}$), parent rock (igneous rock), D.B.H. (6~16cm).

전라북도지역을 산사태 발생지 182개소를 대상지로 선정하여 강우의 특성 및 다양한 환경인자 별로 조사하여 산사태발생 특성을 분석하였다. 전라북도 지역을 산사태 발생 수는 총 182개소였으며, 산사태 발생 평균면적은 $1,859m^2$, 평균 발생토사량은 $4,41m^3$, 평균 길이와 폭은 각각 139m와 13m로 나타났다. 산림환경인자별 산사태 발생 빈도가 높은 인자는 사면경사도 $21{\sim}30^{\circ}$, 북쪽사면, 해발 401m~500m 이상, 종단사면 (오목), 횡단사면 (오목), 침엽수, 화성암, 토심은 15cm이하, 하천차수는 1차, 사면위치 (산복), 산사태 유형 (선상), 임종 (인공림), 수고 11m~15m, 흉고직경 중경목(17cm이상)에서 산사태 발생이 높은 것으로 조사되었다. 전라북도 지역의 산사태 발생면적과 산림환경인자와의 상관을 분석한 결과는 횡단사면 (볼록), 사면위치 (산정), 표고 (501이상), 임상 (침엽수), 모암 (퇴적암), 흉고직경 (17cm이상)과는 1% 수준 내에서 정의상관관계를 보였고, 경사 ($31{\sim}40^{\circ}$), 모암 (화성암), 흉고직경 (6~16)에서 1% 수준 내에서 부의 상관관계를보였다.

Keywords

Acknowledgement

Supported by : 산림청

References

  1. Brand, E. W. 1984. Predicting the Performance of Residual Soil Slopes, Proc. of the 11th Int. Conf. on SMFE., San Francisco, Dec. 1984, 38.
  2. Brand, E. W. 1985. Predicting the performance of residual soil slopes, Proc., 11th, ICSMFE, Sanfrancisco. 2541-2573.
  3. Choi, Y. E. 2003. Trends in daily precipitation events and their extremes in the southern region of Korea. Korean Society of Environmental Impact Assessment 11: 189-203.
  4. Choi, K. 1986. Landslides occurrence and its prediction in Korea. Ph. D. Diss. Kangwon National University. Korea.
  5. Dyrness, C. T. 1967. Mass soil movements in the H.J. Andrews experimental forest. Pacific Northwest Forest and Range Experiment Station U.S. Department of Agriculture U.S. Forest Service. Research Paper. PNW-42: 1-14.
  6. Hong. W. P., Y. W. Kim., S. K. Kim., J. G. Han, and M. Kim. 1990. Prediction of rainfall-triggered landslides in Korea. Jour. Korean. Soc.. Geo. Eng. 6: 55-66.
  7. Kang, W. P., H. S. Ma, and M. G. Jeong. 1998. Studies on the landslides by typhoon No. 875 in Gyeongsangnam-do distiricts. Jour. Korean. For. Soc. 77: 276-282.
  8. Kang, W. P., M. Hiroshi., O. Hiroshi, and H. S. Ma. 1986. On the determination of slope stability to landslide by quantification(II). Jour. Korean. For. Soc. 75: 32-37.
  9. Kim. M. G. 1997. Study in the analysis of landslide problem in Kyoungsang Province. Ms. Diss. Daejeon University. Korea.
  10. Kim. K. S., W. Y. Kim., B. G. Chae., Y. S. Song, and Y. C. Cho. 2005. Engineering geological analysis of landslides on natural slopes induced by rainfall. Jour. Engineering. Geology. Soc. 15: 105-121.
  11. Kim. W. Y., S. R. Lee., K. S. Kim, and B. G. Chae. 1998. Landslide types and related to geomorphic characteristics - Yeonchon-Chulwon area - Jour. Eng. Geo. Soc. 8: 115-130.
  12. Lee. C. W. 2005. Trends of depths and missings caused by natural and sediment disasters in Korea. 2005. Jour. Korean. For. Soc. 94: 252-257.
  13. Lee. S. H. 2005. Application of physically based hydrologic model to the prediction of shallow landslide potential area using GIS. Ph. D. Diss. Chungbuk University. Korea.
  14. Lee. Y. J., G. E. Park., and S. J. kim. 2006. Analysis of landslie. hazard area using logistic regression analysis and AHP (Analytical Hierarchy Process Approach. Jour. Korean. Civ. Soc. 26: 861-867.
  15. Ma, H. S. and W. O. Jeong. 2007. Analysis of landslides characteristics in Korean National Parks. Jour. Korean. For. Soc. 6: 611-619.
  16. Ma. H. S., W. O. Jeong, and J. W. Park. 2008. Development of technique of landslide hazard area in Korea National Parks. Jour. Korean. For. Soc. 97: 326- 331.
  17. Ma. H. S. 1990. Studies on landslide and debris flow in Mt. Chiri district. Res. Bull. Exp. For., Gyeongsang Nat'l. Univ. 1: 13-25.
  18. Ma. H. S. 1992. Studies on landslide and debris flow in NT. Chiri district. Res. Bull. Exp. For., Gyeongsang Nat'l. Univ. 2: 17-28.
  19. Ma. H. S. 1994. Studies on development of prediction model of landslide hazard and its utilization. Jour. Korean. For. Soc. 83: 175-190.
  20. Oliver, M., F. G. Bell, and C. A. Jemy. 1994. The effect of rainfall on slope failure, with examples from the Greater Durban area, Proceedings 7th international Cong. IAEG, Vol. 3, 1629-1636.
  21. Park. N. W., K. H. Chi, and D. H. Jang. 2008. Application of statistical spatial data integration models to susceptibility analysis of induced by typhoon RUSA in Gangneung area. 2004. Jour. Korean. Geo. Ass. 11: 69-80.
  22. Prenchitt, J., E. W. Brand and H. B. Phillipson, 1986. Landslides caused by rapid groundwater changes, Groundwater in Enginecring Geology 87-94.
  23. Woo. B. M., K. B. Yim, and S. W. Lee. 1978. Studies on the landslides and its control measures in Anyang area. Jour. Korean. For. Soc. 39: 1-34.
  24. Shin. E. S. 1996. Landslide analysis geological information system in Poryong and Sochon area. Ms. Diss. Chungnam National University. Korea.
  25. Yang. H. K. and K. Park. 2008. Studies on debris flows by heavy rainfall in Osaek area in July 2006. Jour. Korean. Geo. Ass. 15: 25-35.
  26. Yu. N. J., S. H. Jeon, and N. S. Park. 2008. A study on characteristics of landslides of debris flow in Gangwon-do. Res. Rep. Ins. Ind. Tec. 28: 3-10.
  27. 경상북도. 2006. 산사태 피해예방 조사연구.
  28. 국립공원관리공단. 2001. 국립공원 산사태지 복구대책 수립을 위한 조사.
  29. 국립공원관리공단. 2001. 국립공원 산사태지 복구대책 수립을 위한 조사. p. 106.
  30. 국립방재연구소. 2005. 8월 집중호우 피해조사 보고서.
  31. 김원영, 채병곤, 김경수, 기원서, 조용찬, 최영섭, 이사로, 이봉주. 2000. 산사태 예측 및 방지기술연구, 과학기술부, KR-00(T)-09.
  32. 마호섭. 2001. 주요 국립공원의 산사태 발생특성과 복구방향. 국립공원 제27호; 17-21.
  33. 이수곤. 2002. 태풍 루사에 의한 피해현황 및 대책방안(산사태). 한국수자원학회지 50: 40-49.
  34. 장수군. 2005a. 수해복구추진상황종합보고서(장수군재난안전대책본부). p 1-4.
  35. 장수군. 2005b. 재해대장(산림문화관광과).
  36. 전라북도. 2005. 진안군 재해대장.
  37. 중앙재해대책본부. 2002. 태풍 루사 피해조사보고서.
  38. 최경. 1984. 산사태 발생예지 및 예방공법에 관한 연구. 임시연보. p. 531-549.
  39. 한국지질자원연구원. 2004. 산사태 위험도 선정시스템 및 피해저감기술 개발.
  40. 建設省土木硏究所. 1979. 自然斜面の崩壞とその對策に關する調査硏究報告(その1). 建設省土木硏究所. p. 136.
  41. 細田 豊. 1980. 斜面長と斜面崩壞との關係. 91回 日林論 437-438.
  42. 長崎懸斜面對策危險度判定委員會. 1985. 長崎懸斜面對策危險度判定調査資料. p. 75.
  43. 志水俊夫. 1977. 花崗岩地帶の危險の安定性に關する統計的解析. 日林誌 59: 186-190.
  44. 志水俊夫. 1978. 崩壞の危險がある斜面の判定一その理論と手法一. 林業技術 439: 23-26.