• Title/Summary/Keyword: landslide risk index

Search Result 14, Processing Time 0.021 seconds

The Development of Landslide Predictive System using Measurement Information based on u-IT (u-IT기반 계측정보를 이용한 급경사지붕괴 예측 시스템 개발)

  • Cheon, Dong-Jin;Park, Young-Jik;Lee, Seung-Ho;Kim, Jeong-Seop;Jung, Do-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5115-5122
    • /
    • 2013
  • This paper has studied about the development and application of landslide collapse prediction real-time monitoring system based on USN to detect and measure the collapse of landslide. The rainfall measuring sensor, gap water pressure sensor, indicator displacement measuring sensor, index inclination sensor, water content sensor and image analysis sensor are selected and these are applied on the test bed. Each sensor's operation and performance for reliability verification is tested by the instrument which is installed in the field. As the result, u-IT based real-time landslide monitoring system which is developed by this research for landslide collapse detection could minimize life and property damages because it makes advance evacuation with collapse risk pre-estimate through real-time monitoring on roadside cut and bedrock slopes. This system is based on the results of this study demonstrate the effect escarpment plan are spread throughout.

Construction of NCAM-LAMP Precipitation and Soil Moisture Database to Support Landslide Prediction (산사태 예측을 위한 NCAM-LAMP 강수 및 토양수분 DB 구축)

  • So, Yun-Yeong;Lee, Su-Jung;Choi, Sung-Won;Lee, Seung-Jae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.152-163
    • /
    • 2020
  • The present study introduces a procedure to prepare and manage a high-resolution rainfall and soil moisture (SM) database in the LAMP prediction system, especially for landslide researchers. The procedure also includes converting the data into spatial resolution suitable for their interest regions following proper map projection methods. The LAMP model precipitation and SM data are quantitatively and qualitatively evaluated to identify the model prediction characteristics using the ERA5 reanalysis precipitation and observed 10m depth SM data. A detailed process of converting LAMP Weather Research and Forecasting (WRF) output data for 10m horizontal resolution is described in a step-wise manner, providing technical convenience for users to easily convert NetCDF data from the WRF model into TIF data in ArcGIS. The converted data can be viewed and downloaded via the LAMP website (http://df.ncam.kr/lamp/index.do) of the National Center for AgroMeteorology. The constructed database will contribute to monitoring and prediction of landslide risk prior to landslide response steps and should be data quality controlled by more observation data.

Disaster risk predicted by the Topographic Position and Landforms Analysis of Mountainous Watersheds (산지유역의 지형위치 및 지형분석을 통한 재해 위험도 예측)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • Extreme climate phenomena are occurring around the world caused by global climate change. The heavy rains exceeds the previous record of highest rainfall. In particular, as flash floods generate heavy rainfall on the mountains over a relatively a short period of time, the likelihood of landslides increases. Gangwon region is especially suffered by landslide damages, because the most of the part is mountainous, steep, and having shallow soil. Therefore, in this study, is to predict the risk of disasters by applying topographic classification techniques and landslide risk prediction techniques to mountain watersheds. Classify the hazardous area by calculating the topographic position index (TPI) as a topographic classification technique. The SINMAP method, one of the earth rock predictors, was used to predict possible areas of a landslide. Using the SINMAP method, we predicted the area where the mountainous disaster can occur. As a result, the topographic classification technique classified more than 63% of the total watershed into open slope and upper slope. In the SINMAP analysis, about 58% of the total watershed was analyzed as a hazard area. Due to recent developments, measures to reduce mountain disasters are urgently needed. Stability measures should be established for hazard zone.

Comparison of Analysis Model on Soil Disaster According to Soil Characteristics (지반특성에 따른 토사재해 해석 모델 비교)

  • Choi, Wonil;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.6
    • /
    • pp.21-30
    • /
    • 2017
  • This study analyzed the ground characteristics region by designating 3 research areas, Anrim-dong in Chungju City, Busa-dong in Daejeon Metropolitan City and Sinan-dong in Andong City out of the areas subject to concentrated management to prepare for sediment disaster in downtown areas. The correlation between ground characteristics were observed by using characteristics (crown density, root cohesion, rainfall characteristics, soil characteristics) and the risk areas were predicted through sediment disaster prediction modeling. Landslide MAPping (LSMAP), Stability Index MAPping (SINMAP) and Landslide Hazard MAP (LHMAP) were used for the comparative analysis of the hazard prediction model for sediment disaster. As a result of predicting the sediment disaster danger, in case of SINMAP which was generally used, excessive range was predicted as a hazardous area and in case of the Korea Forest Service's landslide hazard map (LHMAP), the smallest prediction area was assessed. LSMAP predicted a medium range of SINMAP and LHMAP as hazardous area. The difference of the prediction results is that the analysis parameters of LSMAP is more diverse and engineering than two comparative models, and it is found that more precise prediction is possible.