• Title/Summary/Keyword: landslide hazards

Search Result 87, Processing Time 0.023 seconds

The Current Methods of Landslide Monitoring Using Observation Sensors for Geologic Property (지질특성 관측용 센서를 이용한 산사태 모니터링 기법 현황)

  • Chae, Byung-Gon;Song, Young-Suk;Choi, Junghae;Kim, Kyeong-Su
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.291-298
    • /
    • 2015
  • There are many landslides occurred by typhoons and intense rainfall during the summer seasons in Korea. To predict a landslide triggering it is important to understand mechanisms and potential areas of landslides by the geological approaches. However, recent climate changes make difficult to predict landslide based on only conventional prediction methods. Therefore, the importance of a real-time monitoring of landslide using various sensors is emphasized in recent. Many researchers have studied monitoring techniques of landslides and suggested several monitoring systems which can be applicable to the natural terrain. Most sensors of landslide monitoring measure slope displacement, hydrogeologic properties of soils and rocks, changes of stress in soil and rock fractures, and rainfall amount and intensity. The measured values of each sensor are transmitted to a monitoring server in real-time. The ultimate goal of landslide monitoring is to warn landslide occurrence in advance and to reduce damages induced by landslides. This study introduces the current situation of landslide monitoring techniques in each country.

DETECTING LANDSLIDE LOCATION USING KOMSAT 1AND IT'S USING LANDSLIDE-SUSCEPTIBILITY MAPPING

  • Lee, Sa-Ro;Lee, Moung-Jin
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.840-843
    • /
    • 2006
  • The aim of this study was to detect landslide using satellite image and apply the landslide to probabilistic landslide-susceptibility mapping at Gangneung area, Korea using a Geographic Information System (GIS). Landslide locations were identified by change detection technique of KOMSAT-1 (Korea Multipurpose Satellite) EOC (Electro Optical Camera) images and checked in field. For landslide-susceptibility mapping, maps of the topography, geology, soil, forest, lineaments, and land cover were constructed from the spatial data sets. Then, the sixteen factors that influence landslide occurrence were extracted from the database. Using the factors and detected landslide, the relationships were calculated using frequency ratio, one of the probabilistic model. Then, landslide-susceptibility map was drawn using the frequency ration and finally, the map was verified by comparing with existing landslide locations. As the verification result, the prediction accuracy showed 86.76%. The landslide-susceptibility map can be used to reduce hazards associated with landslides and to land cover planning.

  • PDF

Assessment of geological hazards in landslide risk using the analysis process method

  • Peixi Guo;Seyyed Behnam Beheshti;Maryam Shokravi;Amir Behshad
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.451-454
    • /
    • 2023
  • Landslides are one of the natural disasters that cause a lot of financial and human losses every year It will be all over the world. China, especially. The Mainland China can be divided into 12 zones, including 4 high susceptibility zones, 7 medium susceptibility zones and 1 low susceptibility zone, according to landslide proneness. Climate and physiography are always at risk of landslides. The purpose of this research is to prepare a landslide hazard map using the Hierarchical Analysis Process method. In the GIS environment, it is in a part of China watershed. In order to prepare a landslide hazard map, first with Field studies, a distribution map of landslides in the area and then a map of factors affecting landslides were prepared. In the next stage, the factors are prioritized using expert opinion and hierarchical analysis process and nine factors including height, slope, slope direction, geological units, land use, distance from Waterway, distance from the road, distance from the fault and rainfall map were selected as effective factors. Then Landslide risk zoning in the region was done using the hierarchical analysis process model. The results showed that the three factors of geological units, distance from the road and slope are the most important have had an effect on the occurrence of landslides in the region, while the two factors of fault and rainfall have the least effect The landslide occurred in the region.

Model Test to Predict the Runout Distance of Landslide according to Hourly Rainfall (강우강도에 따른 산사태 확산범위 예측을 위한 모형실험)

  • Song, Young-Suk;Chae, Byung-Gon;Kim, Won-Young;Seo, Yong-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.12-19
    • /
    • 2006
  • Landslide model experiments considering hourly rainfall were performed to investigate and predict the run out distance induced by landslides. The model flume and the rainfall simulator were designed and produced. The model flume was designed in consideration of the landslide characteristics of Korea. The landslides in Korea were mainly occurred in the interface between soil layer and rock layer. The rainfall simulator was produced for controlling hourly rainfall ranged from 100mm/hr to 1,000mm/hr. Jumnunjin standard sand as slope soils was placed on the model flume. The model experiments were performed with changing the hourly rainfall ranged from 150mm/hr to 250mm/hr. In this experiments, the inclination of slope was 25o and the relative density of slope soils was 35%. As a result of experiments, the pore water pressure is rapidly increased at landslide occurring time, and the scale of landslide is increased with increasing in hourly rainfall. The spreading range of run out distance is occurred with pan type, and the spreading width and length are rapidly increased in its early stage and slowly increased after early stage. Also, The increasing velocity of run out distance of debris is influenced by hourly rainfall.

  • PDF

A Comparative Analysis of Landslide Susceptibility Assessment by Using Global and Spatial Regression Methods in Inje Area, Korea

  • Park, Soyoung;Kim, Jinsoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.579-587
    • /
    • 2015
  • Landslides are major natural geological hazards that result in a large amount of property damage each year, with both direct and indirect costs. Many researchers have produced landslide susceptibility maps using various techniques over the last few decades. This paper presents the landslide susceptibility results from the geographically weighted regression model using remote sensing and geographic information system data for landslide susceptibility in the Inje area of South Korea. Landslide locations were identified from aerial photographs. The eleven landslide-related factors were calculated and extracted from the spatial database and used to analyze landslide susceptibility. Compared with the global logistic regression model, the Akaike Information Criteria was improved by 109.12, the adjusted R-squared was improved from 0.165 to 0.304, and the Moran’s I index of this analysis was improved from 0.4258 to 0.0553. The comparisons of susceptibility obtained from the models show that geographically weighted regression has higher predictive performance.

Geospatial Technologies for Landslide Inventory: Application and Analysis to Earthquake-Triggered Landslide of Sindhupalchowk, Nepal

  • Acharya, Tri Dev;Yang, In Tae;Lee, Dong Ha
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.95-106
    • /
    • 2016
  • Landslide is one of the natural hazards, triggered by rainfall or earthquake and it leads to damage and loss of properties and lives especially in hilly and mountainous regions. Inventory maps of the area is of much importance in order to understand the landslide phenomena in detail, conduct further studies on landslide, prepare susceptibility map and minimize risk. Inventory maps of landslides can be constructed by several methods, using multiple images through visual interpretation, using algorithms in multi-spectral or SAR images or verification from field investigation. The possible methods were explored for Sindhupalchowk district of Nepal, which was struck by massive earthquake on 2015 and landslide inventory was prepared. The inventory was analyzed for its frequency over elevation, slope aspect and dominant soil classes and also the information value for their occurrence probability.

Landslide Susceptibility Analysis of Clicap, Indonesia

  • Kim, I. J.;Lee, S.;Choi, J. W.;Soedradjat, Gatot Moch
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.141-143
    • /
    • 2003
  • The aim of this study is to evaluate the susceptibility of landslides at Clicap area, Indonesia , using a Geographic Information System (GIS). Landslide locations were identified from field surveys. The topographic and geological map were collected and constructed into a spatial database using GIS. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography, were calculated from the topographic database and lihology and fault was extracted from the geological database. Then landslide susceptibility was analyzed using the landslide-occurrence factors by likelihood methods. The results of the analysis were verified using the landslide location data. The GIS was used to analyze the vast amount of data efficiently . The results can be used to reduce associated hazards, and to plan land use and construction.

  • PDF

GIS technolgy for analysing regional geologic hazards (Landslides) (광역 지질재해분석(산사태)을 위한 GIS활용)

  • 김윤종;김원영;유일현
    • The Journal of Engineering Geology
    • /
    • v.2 no.2
    • /
    • pp.131-140
    • /
    • 1992
  • GIS(Geographic Information System) technology was applied for analysis of the potential degree of regional geologic hazard, especially landslide hazards in the suburb of Seoul City, whereby a regional geologic hazard map was produced. The factors causing a landslide such as slope geometry, geology, groundwater, soil property, rainfall and vegetation were incorporated through GIS in order to predict the potential hazards in this area. Cartographic simulation was finally made with these factors to produce a regional geologic hazard map. For this study, ARC/INFO and ERDAS systems were used in SUN 4-390 workstation.

  • PDF

Development of a Landslide Hazard Prediction Model using GIS (GIS를 이용한 산사태 위험지 판정 모델의 개발)

  • Lee, Seung-Kii;Lee, Byung-Doo;Chung, Joo-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.81-90
    • /
    • 2005
  • Based on the landslide hazard scoring system of Korea Forest Research Institute, a GIS model for predicting landslide hazards was developed. The risk of landslide hazards was analyzed as the function of 7 environmental site factors for the terrain, vegetation, and geological characteristics of the corresponding forest stand sites. Among the environmental factors, slope distance, relative height and shapes of slopes were interpreted using the forestland slope interpretation module developed by Chung et al. (2002). The program consists of three modules for managing spatial data, analyzing landslide hazard and report-writing, A performance test of the model showed that 72% of the total landslides in Youngin-Ansung landslides area took place in the highly vulnerable zones of grade 1 or 2 of the landslide hazard scoring map.

  • PDF

A Prediction Model of Landslides in the Tertiary Sedimentary Rocks and Volcanic Rocks Area (제3기 퇴적암 및 화산암 분포지의 산사태 예측모델)

  • Chae Byung-Gon;Kim Won-Young;Na Jong-Hwa;Cho Yong-Chan;Kim Kyeong-Su;Lee Choon-Oh
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.443-450
    • /
    • 2004
  • This study developed a prediction model of debris flow to predict a landslide probability on natural terrain composed of the Tertiary sedimentary and volcanic rocks using a logistic regression analysis. The landslides data were collected around Pohang, Gyeongbuk province where more than 100 landslides were occurred in 1998. Considered with basic characteristics of the logistic regression analysis, field survey and laboratory soil tests were performed for both slided points and not-slided points. The final iufluential factors on landslides were selected as six factors by the logistic regression analysis. The six factors are composed of two topographic factors and four geologic factors. The developed landslide prediction model has more than $90\%$ of prediction accuracy. Therefore, it is possible to make probabilistic and quantitative prediction of landslide occurrence using the developed model in this study area as well as the previously developed model for metamorphic and granitic rocks.