• Title/Summary/Keyword: landscape monitoring

Search Result 373, Processing Time 0.02 seconds

Vegetation Structure and Population Dynamics of Berchemia racemosa Habitats (청사조(Berchemia racemosa) 자생지의 식생구조 및 개체군 동태 분석)

  • Beon, Mu-Sup;Kim, Young-Ha
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.6
    • /
    • pp.679-690
    • /
    • 2008
  • The objectives of this study are to investigate and analyze the vegetation structure and population dynamics of Berchemia racemosa habitats in the Weolmyung park in Gunsan city, and base on that to seek the ecological habitat conservation plan for the Berchemia racemosa. In results, the Berchemia racemosa habitats are located at $81{\sim}93$ meters above the sea level, in steep seaside slope of a mountain. The soil texture are silt loam mainly and soil pH were $4.1{\sim}5$. The vascular plants in the Berchemia racemosa habitats has been analyzed as 61 taxa; 33 families, 51 genera, 54 species, 6 varieties, and 1 forms. Berchemia racemosa as a Specific plant species by floral region was the class V. Berchemia racemosa habitats were classified into 7 vegetation communities of Quercus serrata community(A1), Alnus firm a community(A2), Platycarya strobilacea community(A3), Robinia pseudoacacia community(A4) and 3 Pinus densiflora communities(B1, B2, B3). The importance value of Berchemia racemosa were 30%(A1), 15%(A2), 27%(A3), 65%(A4), 18%(B1), 45%(B2) and 35%(B3) on shrubs layer and 12, 27, 20, 18, 11, 18, 21 % on herb layer. The constant companion species with Berchemia racemosa were Stephanandra incisa and Ligustrum obtusifolium. Total 103 populations appear in the 7 Berchemia racemosa habitats. Their spatial distribution pattern were clumped for the most part. The average height was 133cm, the root color diameter was 4.4cm and the ramification branch number was 9.4. From the results of this study, it is suggested the continued monitoring and the active protection measures for the Berchemia racemosa habitats.

Base Study for Improvement of School Environmental Education with the Education Indigenous Plants - In the case of Mapo-Gu Elementary School in Seoul - (자생식물 교육을 통한 학교 환경교육 개선에 관한 기초연구 - 서울시 마포구 초등학교를 중심으로 -)

  • Bang, Kwang-Ja;Park, Sung-Eun;Kang, Hyun-Kung;Ju, Jin-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.1
    • /
    • pp.10-19
    • /
    • 2000
  • Due to the urbanization, concentrated population, and limited land exploitation in the modern society, the environment surrounding that we live in is getting polluted more and more, and it has become hard even to let urban children experience the nature. This research was conducted to help people recognize the importance of our natural resources through the environmental education of elementary school and to use school's practical open-space for the Indigenous Plants education. The results of this study are as follows : First, the status of a plant utilization in our institutional education : There were 362 species totally of 124 species of Trees, 156 species of Herbs, 63 species of Crops, and 19 species of Hydrophytes which appear in the elementary school text book. Of all, the most frequently appearing species of tree were the Malus pumila var. dulcissima, Pinus densijlora, Citrus unshiu, Diospyros kaki. Second, the effect of plant education using the land around schools : The result of research on the open-space of the 19 elementary schools located in Mapo-gu showed that most of the species planted are the Juniperus chinensisrose, Hibiscus syriacus. Pelargonium inquinans in the order of size, and the plants appearing in text book were grown in the botanical garden organized in 7 schools. Especially most of the Indigenous Plants were being planted in botanical garden, and Pinus densijlora, Abeliophyllum distichum, Polygonatum var. plurijlorum, Liriope platyphylla and so on. Last, the result of this research on recognition of Environment, Planting education and Indigenous plants : It showed that educational necessity of students and teachers about environment and Indigenous Plants was more than 80%. The management of botanical garden was conducted by some teachers and managers. The results of this study suggested that we needed the reconstruction of curriculum, the efficient application of plant education for effectiveness of using school environment and monitoring continually and construction information sources for the better environment education in the elementary schools.

  • PDF

Temporal Changes of Hyalessa fuscata Songs by Climate Change (기후변화에 의한 참매미 번식울음 시기 변화 연구)

  • Kim, Yoon-Jae;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.2
    • /
    • pp.244-251
    • /
    • 2018
  • The present study aimed to identify the influence of climate change on mating songs of Cicadidae in a phenological perspective. The research sites were located in the central part of the Korean peninsula in which phenological observations by the Meteorological Office are made. The material provided by the Meteorological Office was used for long term phenological analysis. The findings demonstrated, First, the phenological monitoring of cicada is an effective index to detect ecological changes due to climate change, thus indicating the importance of long term phenological investigations for future studies. Second, the analysis on the phenological changes of H. fuscata presented a trend in which the first songs were made at increasingly earlier and later dates, respectively. The phenological data on H. fuscata and average temperatures exhibited a significant negative correlation between the initial mating song period and the average temperatures of June. Furthermore, there was also a significant negative correlation for precipitation in October with the end time and total duration of H. fuscata song. Third, in the regression analysis of the start of H. fuscata song and meteorological factors in Seoul, increasing average air temperature in spring (March to June), which includes June, was associated with an earlier start time of H. fuscata song, with calling starting approximately 3.0-4.5 days earlier per $1^{\circ}C$ increase. Fourth, in the regression analysis of the end of H. fuscata song and meteorological factors in Seoul, increased mean precipitation in October was associated with an early end time and an overall reduction in the length of the song period. The end time of song decreased by approximately 0.78 days per 1mm increase in precipitation, and the total length of the song period decreased by 0.8 days/1mm. This research is important, as it is the initial research to identify the phenological changes in H. fuscata due to climate change.

The Change of Riverside Vegetation by Construction of Ecological Stream in Suwoncheon, Gyeonggi Province (경기도 수원천 생태하천 복원사업 이후 식생변화 연구)

  • Choe, Il-Hong;Han, Bong-Ho;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • This study aims to analyze the change in vegetation for 10 years after the construction, targeting Suwoncheon, the first domestic ecological stream construction project. As for the section for the study, the section from Gyeonggi bridge to Youngyeon bridge, the first restoration project section, was targeted. The research districts consisted of 3 districts depending on topographical structure. Investigation check cosisted of cross-sectional topographical structure, vegetation status and the structure of herbaceous plant community. As for the cross-sectional topographical structure of the stream, the width of entire stream was 26.5~28.0m and water channel is 10~20m. The area for hydrophilic space was securing spacious riverside. Upper stream of reservoir beam was shallow and slow in reservoir area above weir. Lower stream of reservoir beam, the width of water channel was narrow and ripples were formed. Among species, 9 plants were planted and 6 species plants including Salix gracilistyla, Phragmites communis and Zoysia japonica were planted at the time of construction. In the water side, there were 2 species, such as Zoysia japonica and Trifolium repens, etc, still remained after seeding at the time of constrcution. The planted plants which were observed through this investigation, were 2 species such as Festuca arundinacea and Dactylis glomerata. Apart from the planted plants, arid climate herbaceous plant such as Setaria viridis and Artemisia princeps var. orientalis formed power and the naturalized species variously emerged in 15 species. For revetment, natural stone stacking method was condicted and Salix gracilistyla, Aceriphyllum rossii, etc were planted. But all the planted plants disappeared and now it was covered with Equisetum arvense and Humulus japonicus. It was because that the base for growth and development of the plants was not constructed at the time of restoration in a way of attaching natural stones onto the concrete base. In the water channel, various wetland species including Typha orientalis, Acorus calamus var. angustatus and Phragmites communis, etc, were planted but only Salix gracilistyla, Phragmites communis and Zizania latifolia remained. As for species of the autochthons, Persicaria thunbergii was dominant. In the lower stream of reservoir beam, Humulus japonicus formed forces. In the hydrophilic space, it was necessary to direct the landscape of in-stream vegetation in cosideration of users. For this, planting Miscanthus sacchariflorus in a community was proposed. In the upper stream of reservoir beam, suplementary screen seeding was necessary so that Zizania latifolia, Typha orientalis and Phragmites communis can fit the depth of water. In the Lower stream of reservoir beam, it was necessary to constantly manage Humulus japonicus so that the wetland autochthons species, such as Phragmites communis and Persicaria thunbergii can establish power more stably.

Management Guidelines and the Structure of Vegetation in Natural Monuments Koelreuteria Paniculata Community (천연기념물 모감주나무군락의 식생구조와 관리제언)

  • Shin, Byung Chul;Lee, Won Ho;Kim, Hyo Jeong;Hong, Jeum Kyu
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.1
    • /
    • pp.100-117
    • /
    • 2010
  • This study analyzed vegetation structure of natural monuments Koelreuteria paniculata community in search of a conservation and management plan. Plant sociological analysis of Koelreuteria paniculata community indicates that it can be classified into Achyranthes japonica subcommunity and Rhodotypos scandens subcommunity and Trachelospermum asiaticum var. intermedium subcommunity. While Koelreuteria paniculata community of Ahnmyeondo is composed of sub tree layer and herb layer, those of Pohang and Wando are composed of tree layer, Sub tree layer, shrub layer, herb layer. The results of tree vitality analysis showed that those in Ahnmyeondo appeared to be relatively low when compared to those in Pohang and Wando-gun. This can be understood in two different aspects: disease and insects vulnerability due to a relatively simple structure and lack of competitive species, and decreased vitality / natural branch losses due to crown competition arising from high density. The result of soil characteristics analysis showed that soil texture, soil pH, organic matter, $p_2O_5$, exchange positive ion were sufficient for tree growth while total nitrogen was not, so that discretion would be needed for fertilizer application. As there were damages of disease and inscet, but only for 10~15% of the entire area; it still requires consistent preconsideration. The study suggests the management methods for preservation of Koelreuteria paniculata community. First, securing designated areas is necessary in order to minimize environment deterioration due to surrounding development. Especially, for sections with decreased areas, expansion of designated areas through land purchase should also be considered. Second, artificial interference may affect the livestock. Therefore, monitoring of artificial interference is necessary, based on which protection projects must be conducted. Third, from analysis of young plants which influence the maintenance mechanisms of Koelreuteria paniculata community, a decrease compared to the prior year was observed; investigation is needed. Therefore, an active management policy through status examination of livestock such as germination and young plants is necessary.

Selection of Optimal Models for Predicting the Distribution of Invasive Alien Plants Species (IAPS) in Forest Genetic Resource Reserves (산림생태계 보호구역에서 외래식물 분포 예측을 위한 최적 모형의 선발)

  • Lim, Chi-hong;Jung, Song-hie;Jung, Su-young;Kim, Nam-shin;Cho, Yong-chan
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.589-600
    • /
    • 2020
  • Effective conservation and management of protected areas require monitoring the settlement of invasive alien species and reducing their dispersion capacity. We simulated the potential distribution of invasive alien plant species (IAPS) using three representative species distribution models (Bioclim, GLM, and MaxEnt) based on the IAPS distribution in the forest genetic resource reserve (2,274ha) in Uljin-gun, Korea. We then selected the realistic and suitable species distribution model that reflects the local region and ecological management characteristics based on the simulation results. The simulation predicted the tendency of the IAPS distributed along the linear landscape elements, such as roads, and including some forest harvested area. The statistical comparison of the prediction and accuracy of each model tested in this study showed that the GLM and MaxEnt models generally had high performance and accuracy compared to the Bioclim model. The Bioclim model calculated the largest potential distribution area, followed by GLM and MaxEnt in that order. The Phenomenological review of the simulation results showed that the sample size more significantly affected the GLM and Bioclim models, while the MaxEnt model was the most consistent regardless of the sample size. The optimal model overall for predicting the distribution of IAPS among the three models was the MaxEnt model. The model selection approach based on detailed flora distribution data presented in this study is expected to be useful for efficiently managing the conservation areas and identifying the realistic and precise species distribution model reflecting local characteristics.

Understanding the Impact of Environmental Changes on the Number of Species and Populations of Odonata after Creating a Constructed Wetland (인공습지 조성 후 환경변화가 잠자리목의 종수 및 개체수에 미치는 영향 파악)

  • Lee, Soo-Dong;Bae, Soo-Hyoung;Lee, Gwang-Gyu
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.515-529
    • /
    • 2020
  • Constructed wetlands undergo biological and physical changes such as an increase in the proportion of arid plants due to the natural succession process after formation. It can adversely affect not only the purification function but also the habitat of species. As such, this study aims to identify environmental factors affecting biodiversity and propose management plans based on the monitoring results of physical environmental changes and the emergence of species in seven constructed wetlands selected based on the water depth and surrounding conditions among the lands purchased by the Nakdong River basin. We examined the environmental conditions and emergence of the Odonata, which is a wetland-dependent species, to predict the trend of changes in biodiversity and abundance. The results showed that the open water area decreased as the emergent plants spread to the deep water in 2015 compared to 2012 when they were initially restored to a depth of 0.2 to 1 m. While a total of 54 dragonfly species were observed, the habitat diversity, such as vegetation, water surface, and grassland, remained similar to the initial formation of the wetlands despite the expansion of the emergent plants. On the other hand, the number of Agrionidae species, which prefer areas with fewer aquatic plants, decreased between 2012 and 2015 due to the diminished water surface. The p-values of the differences in the number of species and population between wetlands by year were 2.568e-09 and 1.162e-08, respectively, indicating the statistically significant differences. The decrease in open water surface was found to have the greatest effect on the biodiversity and habitat density of dragonflies. The time-series survey of constructed wetlands confirmed that the spread of Phragmites communis, P. japonica, Typha orientalis, etc., caused a decrease in species diversity. It suggests that environmental management to maintain the open water surface area is necessary.

Analysis of Soil Changes in Vegetable LID Facilities (식생형 LID 시설의 내부 토양 변화 분석)

  • Lee, Seungjae;Yoon, Yeo-jin
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.204-212
    • /
    • 2022
  • The LID technique began to be applied in Korea after 2009, and LID facilities are installed and operated for rainwater management in business districts such as the Ministry of Environment, the Ministry of Land, Infrastructure and Transport, and LH Corporation, public institutions, commercial land, housing, parks, and schools. However, looking at domestic cases, the application cases and operation periods are insufficient compared to those outside the country, so appropriate design standards and measures for operation and maintenance are insufficient. In particular, LID facilities constructed using LID techniques need to maintain the environment inside LID facilities because hydrological and environmental effects are expressed by material circulation and energy flow. The LID facility is designed with the treatment capacity planned for the water circulation target, and the proper maintenance, vegetation, and soil conditions are periodically identified, and the efficiency is maintained as much as possible. In other words, the soil created in LID is a very important design element because LID facilities are expected to have effects such as water pollution reduction, flood reduction, water resource acquisition, and temperature reduction while increasing water storage and penetration capacity through water circulation construction. In order to maintain and manage the functions of LID facilities accurately, the current state of the facilities and the cycle of replacement and maintenance should be accurately known through various quantitative data such as soil contamination, snow removal effects, and vegetation criteria. This study was conducted to investigate the current status of LID facilities installed in Korea from 2009 to 2020, and analyze soil changes through the continuity and current status of LID facilities applied over the past 10 years after collecting soil samples from the soil layer. Through analysis of Saturn, organic matter, hardness, water contents, pH, electrical conductivity, and salt, some vegetation-type LID facilities more than 5 to 7 years after construction showed results corresponding to the lower grade of landscape design. Facilities below the lower level can be recognized as a point of time when maintenance is necessary in a state that may cause problems in soil permeability and vegetation growth. Accordingly, it was found that LID facilities should be managed through soil replacement and replacement.

Species Composition and Vegetation Structure of Abies koreana Forest in Mt. Jiri (지리산 구상나무림의 종조성 및 식생구조)

  • Jin-Soo Lee;Dong-Bin Shin;A-Rim Lee;Seung-Jae Lee;Jun-Soo Kim;Jun-Gi Byeon;Seung-Hwan Oh
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.4
    • /
    • pp.259-272
    • /
    • 2023
  • This study set up 49 survey areas with an area of about 400 square meters in Abies koreana natural habitat to identify the species composition and vegetation structure of the A. koreana forest in the Mt. Jiri Nation Park, conducted field surveys using phytosociological methods, and performed the cluster analysis using the Two-Way Indicator Species Analysis (TWINSPAN) and Table manipulation. Subsequently, species composition analysis using the importance value, species diversity analysis, DBH analysis, sapling analysis, and similarity analysis was conducted by each cluster type. The cluster analysis classified the A. koreana forest in Mt. Jiri into five clusters, A, B, C, D, and E. The forest was divided into two clusters, Magnolia sieboldii-Dryopteris crassirhizoma-Sasa borealis and Betula ermanii-Solidago virgaurea-Calamagrostis arundinacea. The former was classified as type A and B by Cornus controversa-Hydrangea macrophylla, and the latter was classified as type E, a typical community, and a Sorbus commixta-Rhododendron mucronulatum cluster. And the S. commixta-R. mucronulatum cluster was divided into C type and D type by Picea jezoensis-Ligularia fischeri and Ainsliaea acerifolia. Through vegetation analysis, the importance value of A. koreana, Quercus mongolica, Acer pseudosieboldianum, Fraxinus sieboldiana, and B. ermanii was highly expressed in the A. koreana forest in Mt. Jiri. Regarding species diversity, the results were similar to those reported in other studies of A. koreana forests in Mt. Jiri. The analysis of diameter at breast height (DBH) showed that A. koreana dominated all layers, and the growth of saplings was also good, indicating that the dominance of A. koreana is expected to continue for a while. However, when considering the value of biodiversity that is expected to increase and threats caused by climate change, systematic preservation and management are required to respond to various threats based on continuous monitoring.

Vegetation Characteristics in Cheongwansan Provincial Park (천관산도립공원의 식생 특성)

  • Ji-Woo Kang;Hyun-Mi Kang
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.2
    • /
    • pp.163-178
    • /
    • 2023
  • This study was conducted to understand the vegetation characteristics of Cheongwansan Provincial Park through the analysis of the plant community structure and to build data necessary for the continuous management and protection of Cheongwansan Provincial Park. The TWINSPAN and DCS analyses of the plant community structure of 63 survey districts in Cheongwansan Provincial Park identified eight colonies, including Cryptomeria japonica Community (I), Chamaecyparis obtusa-Pinus densiflora Commuity (II), P. rigida-P. densiflora Community (III), mixed coniferous and broad-leaved Community (IV), P. densiflora Community (V), deciduous broad-leaved such as Quercus spp. Community (VI), Q. mongolica-P. densiflora Community (VII) and P. thunbergii Community (VIII). The colonies can be grouped into afforestation communities (I, II, and III) dominated by C. obtusa, C. japonica, and P. rigida and natural forest communities (IV, V, VI, VII, and VIII) dominated by native species. Although Cheongwansan Provincial Park is a provincial park area that can represent natural ecosystems and landscapes, the rate of artificial forests is higher than that of other provincial parks. Most of the artificial forest communities are expected to maintain their current state, but since native species such as Machilus thunbergii, Neolitsea sericea, and deciduous broad-leaved, which are warm-temperate trees introduced through surrounding natural forests, appear in the lower layer, it is determined that it is possible to induce succession to natural forests suitable for climatic characteristics through management, and monitoring for continuous management is also necessary. Deciduous broad-leaved such as Quercus spp. Copete with P. densiflora in most natural forest communities. The vegetation series in the warm-temperate region of Korea appears to be in the early stages, and it is believed that the succession to Q. serrata or Q. mongolica, which appears next to coniferous in the series, is in progress. However, M. thunbergii and N. sericea, which appear in the middle stage of the succession in the warm-temperate region, have started to appear, and since Jangheung-gun belongs to the warm-temperate region considering the climate characteristics, the eventual succession to the warm-temperate forests dominated by evergreen broad-leaved is also expected. In this study, we built vegetation data from Cheongwansan Provincial Park, which lacks research on vegetation. However, since vegetation research in Cheongwansan Provincial Park is still insufficient, it is believed that further research should be continuously conducted to establish forest vegetation data and observe vegetation changes.