• Title/Summary/Keyword: landscape change

Search Result 1,068, Processing Time 0.028 seconds

Bioacoustic Change of Dybowski's Brown Frog by Highway Noise (고속도로 소음에 의한 북방산개구리의 생물음향학적 특성 변화 연구)

  • Ki, Kyong-Seok;Sung, Chan-Yong
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.3
    • /
    • pp.273-280
    • /
    • 2014
  • This study examined whether Dybowski's brown frogs(Rana dybowskii) in noisy highway roadsides had different mating calls from those in natural sites. We selected four study sites: two rice paddy sites in Youngdong Highway roadside and two nearby natural counterparts. Frog calls were recorded between 18:30 and 20:00 on February 24, February 27, and March 14, 2014. Frog calls in the natural sites had fundamental frequency approximately at 700 Hz with two to four apparent harmonics, while frog calls in the highway sites had higher fundamental frequency with up to seven apparent harmonics. Analysis of variance (ANOVA) shows that a roadside site that are directly exposed to highway noise had statistically higher frog calling frequency than other study sites. However, the higher calling frequency was not found in another roadside site that differed in elevation from the highway and was buffered by forests. These results indicate that male frogs in a noisy highway roadside called females with a higher pitch and more apparent harmonics to avoid being masked by highway noise. These results also suggest that there is a threshold noise level that interrupts frog's mating behavior and it is needed to maintain highway roadside noise to this threshold level.

A Study of Factors Influencing of Temperature according to the Land Cover and Planting Structure in the City Park - A Case Study of Central Park in Bundang-gu, Seongnam - (도시공원의 토지피복 및 식재구조에 따른 온도 영향요인 규명 연구 - 성남시 분당구 중앙공원을 사례로 -)

  • Ki, Kyong-Seok;Han, Bong-Ho;Hur, Ji-Yeon
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.5
    • /
    • pp.801-811
    • /
    • 2012
  • The purpose of this study is to find out how land cover and planting of an urban park influence temperature. Field research on the land cover and planting status was conducted for Bundang Central Park in Sungnam-si. 30 study plots in the site were selected to closely analyze land cover type and planting structure. The temperature was measured 10 times for each plot. Land coverage type, planting type, planting layer structure and green space area (the ratio of green coverage, GVZ) were chosen as factors impacting temperature and statistics were analyzed for the actual temperature measured. Analysis on how the land coverage type influences temperature showed that planting site had a low temperature and that grassland and paved land had a high temperature. When it comes to planting type, the temperature at the land planted with conifers and broad-leaved trees was low, while the temperature at grassland and paved land was high. With regard to planting layer structure, canopy and canopy-underplanting type showed low temperature, while grassland and paved land showed high temperature. An analysis on the relation between green space area and temperature found out that both ratio of green coverage and GVZ had a high level of negative correlation with the temperature measured. According to regression model of green space area and the temperature measured, for every 1% increase in the ratio of green coverage, temperature is expected to lower by $0.002^{\circ}C$. Also, for every $1m^3/m^2$ increase in GVZ, temperature is expected to go down by $0.122^{\circ}C$.

A New Paradigm in the Distribution of Sport Contents: Sports as a New Media (스포츠 콘텐츠 유통의 새로운 패러다임: 스포츠의 뉴미디어화)

  • Park, Seong-Hee;Han, Seung-Jin;Seo, Won-Jae
    • Journal of Distribution Science
    • /
    • v.15 no.10
    • /
    • pp.93-103
    • /
    • 2017
  • Purpose - Sports and the media have been developed together through a close relationship. During the past decade, the media landscape and the coverage of sports events have been changed. Sports fans can use the sports content at the time they want, on the platform they prefer. Furthermore, thanks to the advanced information technology, sports fans are likely to be more engaged in sport in communication technology-friendly stadium. However, the literature on the relationship between sports and the media has heavily focused on the differences of media types, clear distinction between media suppliers and consumers, and the limited media extension. Given the limitation of prior research, therefore, it has not fully reflected the change in society and culture, the importance of media recipients or consumers, and the mediating characteristic of the media. In order to generate further insights for sport media related industry and its society, it is necessary to comprehend the contemporary phenomena of real world situation in new media and sport and to discuss how new media influence sport and how their relationship is changing in managerial context. The purpose of this study is to identify new media cases as distribution channels in sports context and is to develop insights by discussing its role and meaning of new media in sport society. Research design, data, and methodology - The study employed the theory-centered review and case analysis. In order to explain phenomena of the role of new media in contemporary sport and to generate related insights in sport context, the study reviewed the new media cases applied in sport industry and interpreted their meaning by employing medium theory, remediation theory, and new media theory. Results - The study discussed the limitation of prior sport media research and identified the characteristics of sport as new media such as remediating, extending sensory organs, reiterating physical space and electronic space. Conclusions - The study derived the characteristics of sport as new media, in a sport setting, and through sports settings. Findings would assist to comprehend the role of new media in spectating sport and provide insights for sport media study.

Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation (인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석)

  • Kim, Tae-Han;Park, Jeong-Hyun;Choi, Boo-Hun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.

A Study on the Architectural Education System for Globalization (국제화시대에 대비한 우리나라 건축교육제도 개선 연구)

  • Yim Chang-Bok
    • Journal of Engineering Education Research
    • /
    • v.2 no.1
    • /
    • pp.39-50
    • /
    • 1999
  • In recent globalization era, Korean architectural education and profession are emerging as the fields with serious problems. There are two major reasons. One is an internal factor caused by Ministry of Education's full scale shift from department to faculty system. Due to the drastic change in this system, most of schools have serious difficulties to deliver the proper professional education. And the other is an external factor. In WTO era, Union of International Architects has adopted $\ulcorner$UIA Accord on Recommended International Standards of Professionalism In Architectural Practice$\lrcorner$. According to the education section of the Accord, it requires 5 years of professional education in the accredited school. So, if it is formally adopted in the Beijing Congress, which is scheduled to be held in June 1999, we may face very serious problems in architectural education. As mentioned above, with the present education system it is believed not easy to meet their new criteria. Within the present system, which does not have any mandatory relationship with professional licence, students might go on to diverse fields such as architectural design, structural engineering, construction management and building equipment engineering. However, if UIA Accord and Engineering Accreditation are required at the same time, it will not be easy to meet their new criteria with present architectural education system. The goal of this paper is to suggest the models to meet the standards of international community while keeping the strengths of existing systems.

  • PDF

Remote Sensing Applications for Malaria Research : Emerging Agenda of Medical Geography (원격탐사 자료를 이용한 말라리아 연구 : 보건지리학적 과제와 전망)

  • Park, Sunyurp
    • Journal of the Korean association of regional geographers
    • /
    • v.18 no.4
    • /
    • pp.473-493
    • /
    • 2012
  • Malaria infection is sensitively influenced by regional meteorological conditions along with global climate change. Remote sensing techniques have become an important tool for extraction of climatic and environmental factors, including rainfall, temperature, surface water, soil moisture, and land use, which are directly linked to the habitat qualities of malaria mosquitoes. Improvement of sensor fidelity with higher spatial and spectral resolution, new multinational sensor development, and decreased data cost have nurtured diverse remote sensing applications in malaria research. In 1984, eradication of endemic malaria was declared in Korea, but reemergence of malaria was reported in mid-1990s. Considering constant changes in malaria cases since 2000, the epidemiological management of the disease needs careful monitoring. Geographically, northmost counties neighboring North Korea have been ranked high in the number of malaria cases. High infection rates in these areas drew special attention and led to a hypothesis that malaria dispersion in these border counties might be caused by north-origin, malaria-bearing adult mosquitoes. Habitat conditions of malaria mosquitoes are important parameters for prediction of the vector abundance. However, it should be realized that malaria infection and transmission is a complex mechanism, where non-environmental factors, including human behavior, demographic structure, landscape structure, and spatial relationships between human residence and the vector habitats, are also significant considerations in the framework of medical geography.

  • PDF

A Comparative Study on General Circulation Model and Regional Climate Model for Impact Assessment of Climate Changes (기후변화의 영향평가를 위한 대순환모형과 지역기후모형의 비교 연구)

  • Lee, Dong-Kun;Kim, Jae-Uk;Jung, Hui-Cheul
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.4
    • /
    • pp.249-258
    • /
    • 2006
  • Impacts of global warming have been identified in many areas including natural ecosystem. A good number of studies based on climate models forecasting future climate have been conducted in many countries worldwide. Due to its global coverage, GCM, which is a most frequently used climate model, has limits to apply to Korea with such a narrower and complicated terrain. Therefore, it is necessary to perform a study impact assessment of climate changes with a climate model fully reflecting characteristics of Korean climate. In this respect, this study was designed to compare and analyze the GCM and RCM in order to determine a suitable climate model for Korea. In this study, spatial scope was Korea for 10 years from 1981 to 1990. As a research method, current climate was estimated on the basis of the data obtained from observation at the GHCN. Future climate was forecast using 4 GCMs furnished by the IPCC among SRES A2 Scenario as well as the RCM received from the NIES of Japan. Pearson correlation analysis was conducted for the purpose of comparing data obtained from observation with GCM and RCM. As a result of this study, average annual temperature of Korea between 1981 and 1990 was found to be around $12.03^{\circ}C$, with average daily rainfall being 2.72mm. Under the GCM, average annual temperature was between 10.22 and $16.86^{\circ}C$, with average daily rainfall between 2.13 and 3.35mm. Average annual temperature in the RCM was identified $12.56^{\circ}C$, with average daily rainfall of 5.01mm. In the comparison of the data obtained from observation with GCM and RCM, RCMs of both temperature and rainfall were found to well reflect characteristics of Korea's climate. This study is important mainly in that as a preliminary study to examine impact of climate changes such as global warming it chose appropriate climate model for our country. These results of the study showed that future climate produced under similar conditions with actual ones may be applied for various areas in many ways.

A Study on Vegetation Structure Changes between Natural land and Damaged land in Regional Ecological Network at Chungnam Province (충남 광역생태네트워크 자연녹지의 훼손지 식생구조 변화)

  • Song, Ju-Hyeon;Yun, Chung-Weon;Cho, Yong-Hyeon;Kang, Hee-Kyoung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.2
    • /
    • pp.13-35
    • /
    • 2017
  • This study was carried out to analyze vegetation structure and change of the disturbed area in forest ecosystem(FE), riparian ecosystem(RE) and coastal ecosystem(CE) related to Regional Ecological Network at Chungnam province through constancy and dominance analysis, species diversity index, similarity index and canonical correlation analysis. Data were collected from April to October in 2015. As a result of constancy and dominance analysis of forest disturbed area, non-effective species(NES) was 30 species(17.0%), exported species(ES) was 98 species(55.7%) and imported species(IS) was 48 species(27.3%) among the total 176 species, respectively. In riparian disturbed area with total 139 species, there were 16 NES(11.5%), 98 ES(70.5%) and 25 IS(18.0%) respectively. In coastal disturbed area with 140 species, there were 20 NES(14.3%), 88 ES(62.9%) and 32 IS(22.9%) respectively. In all types of disturbed areas, the ratio of ES was higher than IS. As a result of species diversity, species richness and shannon's diversity index of disturbed area decreased in all kinds of crown strata such as tree, subtree, shrub and herb layer compared to the control area. As a result of similarity index, that of each type between control site and disturbed site was 0.374 in FE, 0.329 in CE and 0.259 in RE in the order. As a result of the CCA analysis, the number of present species, vine plants ratio and exported species ratio in disturbed area of FE and RE were decreased, and the naturalized plant ratio, imported species ratio and herb ratio were increased. But environmental factors of CE were not shown any clear tendency. In conclusion, many species occupied in control site disappeared into the disturbed area, and the naturalized plants and herb species were abundantly imported in the area. Therefore, it was considered that this study could be applied to the development of long-term and short-term ecological restoration techniques in view of vegetation changes.

Numerical Analysis of Load Reduction for Underground Arch Structures with Soft Zone Using Expanded PolyStyrene Geofoam (EPS Geofoam을 이용한 Soft Zone 적용방법에 따른 지중아치구조물의 하중저감에 관한 해석 연구)

  • Kim, Soo-Ha;Park, Jong-Sup;Kang, Jun-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.24-30
    • /
    • 2018
  • As the demand for underground space increases, many researchers have been studying the load reduction method using high compressible materials to solve for the stability problem of the overhead load and for the increase of the earth pressure which decreases the function of the underground structure. This paper determines the optimum soft zone and the effect of the using EPS Geofoam as a load reduction material to arch structures. A finite element analysis program, ABAQUS, is used to analyze the soil-structure interaction and the behavior of buried arch structures considering different four EPS Geofoam forms to confirm the most conservative shape. The optimum cross-sectional shape was determined by comparing the results of earth pressure reduction rate in accordance with the change of span-rise ratio and span length of the arch structure. It was confirmed that the earth pressure generated in the arch structure using the optimal soft zone selected by the numerical analysis was reduced by an average of 78%. In this study, the effect of EPS Geofoam on soil pressure reduction and its applicability to underground arch structures will provide an economical and conservative way to design underground structures and will help to increase the usability of deep underground space.

A Water Quality Modeling Study of Chunggye Stream during Combined Sewer OverFlow Period (합류식 하수관거 월류수 유입 기간 동안에 나타나는 청계천 수질 변화 모델 연구)

  • Yi, Hye-Suk;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1340-1346
    • /
    • 2005
  • A water quality modeling study was performed for Chunggye stream during combined sewer overflow(CSO) period, utilizing the diagnostic system for water management in small watershed, CREEK-1(Cyber River for Environment and Economy in Korea). This system integrated geogaphic information system, data base, landscape ecological model(FRAGSTATS), watershed model(SWMM), water quality model (WASP5), and computer graphic. In this study, the watershed model and water quality model were extensively utilized so as to simulate water qualities and flow in Chunggye stream during wet periods. The Chunggye stream watershed was divided into 18 sub-basins in the watershed model and the stream reach into 11 segments in the water quality model. The watershed model was validated against field measurements of BOD, TN, TP, and flow at the downstream location, where the model results showed a reasonable agreement with the field measurements at all parameters. From this study, it was shown that the stream water quality would change along with elapsed time from rainfall start as well as rainfall intensity. The model results indicated that the water quality would significantly upgrade due to the first flush and high sewage ratio of CSO at the beginning of rainfall event, but become degraded along with the runoff increase due to dilution effect.