• Title/Summary/Keyword: landing

Search Result 1,095, Processing Time 0.026 seconds

Spin-up, Spring-back Load Analysis of KC-100 Nose Landing Gear using Explicit Finite Element Method (외연적 유한요소법을 이용한 KC-100 전방착륙장치 Spin-up, Spring-back 하중 해석)

  • Park, Ill-Kyung;Kim, Sung-Jun;Ahn, Seok-Min
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.51-57
    • /
    • 2011
  • The spin-up and the spring-back are most severe load cases in the aircraft landing gear design. These load cases are caused by reciprocal action of complex physical phenomenon such as the friction between a tire and ground, inertia of the rotation of a tire and the flexibility of a landing gear structure. Generally, the empirical formula or the theoretical formula is used to calculate the spin-up and spring-back load in the early stage of the development program of the aircraft landing gear. After the materialization of the design of a landing gear, spin-up and spring-back load are acquired by the free drop test. In this study, the spin-up and the spring-back load of the rubber shock absorber type KC-100 nose landing gear are calculated by the explicit finite element analysis. Through this analysis, more accurate and realistic spin-up and spring back loads could be applied to the early phase of the development of the aircraft landing gear.

Guidance Law for Vision-Based Automatic Landing of UAV

  • Min, Byoung-Mun;Tahk, Min-Jea;Shim, Hyun-Chul David;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.46-53
    • /
    • 2007
  • In this paper, a guidance law for vision-based automatic landing of unmanned aerial vehicles (UAVs) is proposed. Automatic landing is a challenging but crucial capability for UAVs to achieve a fully autonomous flight. In an autonomous landing maneuver of UAVs, the decision of where to landing and the generation of guidance command to achieve a successful landing are very significant problem. This paper is focused on the design of guidance law applicable to automatic landing problem of fixed-wing UAV and rotary-wing UAV, simultaneously. The proposed guidance law generates acceleration command as a control input which derived from a specified time-to-go ($t_go$) polynomial function. The coefficient of $t_go$-polynomial function are determined to satisfy some terminal constraints. Nonlinear simulation results using a fixed-wing and rotary-wing UAV models are presented.

Lower extremity stiffness over different landing methods during hopping (호피 시 착지방법에 따른 하지 강성도)

  • Lee, J.J.;Son, J.S.;Kim, J.Y.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.105-108
    • /
    • 2011
  • The purpose of the present study was to analyze the lower stiffness over the difference between soft and stiff landings during hopping. Five male subjects performed hopping on two legs at 2.5 Hz. During the experiments, 3D motion capture system was used to obtain the kinematic data and two force plates were synchronized to calculate the kinetic data. We determined lower extremity stiffness of the knee and ankle from kinetic and kinematic data. Leg stiffness was approximately 1.2-times significantly higher in stiff landing than in soft landing_ There was no significant difference in knee joint stiffness between soft and stiff landings. Ankle joint stiffness was approximately 1.34-times significantly higher in stiff landing than in soft landing. These results suggest that humans adjust lower extremity stiffness over the comparison of two different landing methods we evaluated.

Development and Test of a Docking Type Automatic Landing System for Shipboard Landing (드론 함상 착륙을 위한 도킹 방식의 자동 착륙 시스템 개발 및 시험)

  • Minsu Park;Sungyug Kim;Hyeok Ryu
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.47-55
    • /
    • 2024
  • The paper presents a docking-type automatic landing system that works in tandem with Unmanned Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs). The system utilizes a pyramid-shaped landing gear and pad for effective landing. In marine environments, a docking device guides the drone to land securely. To test the system, a ship's behavior was simulated using a 3-DoF motion platform, and the successful operation and utility of the docking-type automatic landing system were demonstrated.

Force Control of Main Landing Gear using Magneto-Rheological Damper (MR 댐퍼를 이용한 주륜 착륙장치 하중제어기법 연구)

  • Hyun, Young-O;Hwang, Jae-Up;Hwang, Jae-Hyuk;Bae, Jae-Sung;Lim, Kyoung-Ho;Kim, Doo-Man;Kim, Tae-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.344-349
    • /
    • 2009
  • To improve performance of the main landing gear for helicopters, a semi-active control landing gear is introduced in this paper. An MR damper based on commercial finite element electromagnetic field analysis of an electromagnet has been adapted the shock absorber. Force control algorithm (which maintains constantly the sum of air spring force and damping force as internal forces) which keep the sum of air spring force and damping force constant during landing, has been used for the controller, applied to control the semi-active landing gear. A series of drop simulations using ADAMS has been done with the passive, sky-hook control type, and force control type landing gears. The result of each simulation has been compared to evaluate the landing performance of the proposed force control type landing gear.

Change in Kinetics and Kinematics during 1-Footed Drop Landing with an Increase in Upper Body Weight

  • Lee, Jin-Taek;David, O'Sullivan
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The purpose of this study was to investigate changes in kinetic and kinematic variables associated with an increase in upper body weight. Eighteen healthy male university students($175.96{\pm}4.19\;cm$, $70.79{\pm}8.26\;kg$) participated. Eight motion analysis cameras(Qualysis Oqus 500) and 2 force AMTI platforms(Advanced Mechanical Technologies Inc. OR6-7, US) were used to record motion and forces during the drop landing at a frequency of 120 Hz and 1200 Hz, respectively. QTM software(Qualisys Track Manager) was used to record the data, and the variables were analyzed with Visual 3D and Matlab 2009. For the drop landing, a box of $4{\times}2{\times}0.46\;m$ was constructed from wood. Knee and ankle maximum flexion angle, knee flexion angle, knee and ankle angle at landing, time for maximum ankle flexion after landing, and time for maximum knee flexion after landing were calculated. There was a significant change in the time for maximum and minimum ground force reaction and the time for maximum dorsal flexion after landing(p<.05) with increasing weight. There was no significant change for the hip, knee, and ankle ROM, whereas there was an increase in the angle ROM as the weight increased, in the order of ankle, knee, and hip ROM. This result shows that the ankle joint ROM increased with increasing weight for shock attenuation during the drop landing. There was a trend for greater ankle ROM than knee ROM, but there was no clear change in the ROM of the hip joint with increasing weight. In conclusion, this study shows the importance of ankle joint flexibility and strength for safe drop landing.

Vision-based Autonomous Landing System of an Unmanned Aerial Vehicle on a Moving Vehicle (무인 항공기의 이동체 상부로의 영상 기반 자동 착륙 시스템)

  • Jung, Sungwook;Koo, Jungmo;Jung, Kwangyik;Kim, Hyungjin;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.262-269
    • /
    • 2016
  • Flight of an autonomous unmanned aerial vehicle (UAV) generally consists of four steps; take-off, ascent, descent, and finally landing. Among them, autonomous landing is a challenging task due to high risks and reliability problem. In case the landing site where the UAV is supposed to land is moving or oscillating, the situation becomes more unpredictable and it is far more difficult than landing on a stationary site. For these reasons, the accurate and precise control is required for an autonomous landing system of a UAV on top of a moving vehicle which is rolling or oscillating while moving. In this paper, a vision-only based landing algorithm using dynamic gimbal control is proposed. The conventional camera systems which are applied to the previous studies are fixed as downward facing or forward facing. The main disadvantage of these system is a narrow field of view (FOV). By controlling the gimbal to track the target dynamically, this problem can be ameliorated. Furthermore, the system helps the UAV follow the target faster than using only a fixed camera. With the artificial tag on a landing pad, the relative position and orientation of the UAV are acquired, and those estimated poses are used for gimbal control and UAV control for safe and stable landing on a moving vehicle. The outdoor experimental results show that this vision-based algorithm performs fairly well and can be applied to real situations.

Performance Analysis of Landing Point Designation Technique Based on Relative Distance to Hazard for Lunar Lander (달 착륙선의 위험 상대거리 기반 착륙지 선정기법 성능 분석)

  • Lee, Choong-Min;Park, Young-Bum;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.12-22
    • /
    • 2016
  • Lidar-based hazard avoidance landing system for lunar lander calculates hazard cost with respect to the desired local landing area in order to identify hazard and designate safe landing point where the cost is minimum basically using slope and roughness of the landing area. In this case, if the parameters are only considered, chosen landing target can be designated near hazard threatening the lander. In order to solve this problem and select optimal safe landing point, hazard cost based on relative distance to hazard should not be considered as well as cost based on terrain parameters. In this paper, the effect of hazard cost based on relative distance to hazard on safe landing performance was analyzed and it was confirmed that landing site designation with two relative distances to hazard results in the best safe landing performance by an experiment using three-dimensional depth camera.

Vision-based Obstacle State Estimation and Collision Prediction using LSM and CPA for UAV Autonomous Landing (무인항공기의 자동 착륙을 위한 LSM 및 CPA를 활용한 영상 기반 장애물 상태 추정 및 충돌 예측)

  • Seongbong Lee;Cheonman Park;Hyeji Kim;Dongjin Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.485-492
    • /
    • 2021
  • Vision-based autonomous precision landing technology for UAVs requires precise position estimation and landing guidance technology. Also, for safe landing, it must be designed to determine the safety of the landing point against ground obstacles and to guide the landing only when the safety is ensured. In this paper, we proposes vision-based navigation, and algorithms for determining the safety of landing point to perform autonomous precision landings. To perform vision-based navigation, CNN technology is used to detect landing pad and the detection information is used to derive an integrated navigation solution. In addition, design and apply Kalman filters to improve position estimation performance. In order to determine the safety of the landing point, we perform the obstacle detection and position estimation in the same manner, and estimate the speed of the obstacle using LSM. The collision or not with the obstacle is determined based on the CPA calculated by using the estimated state of the obstacle. Finally, we perform flight test to verify the proposed algorithm.

Biomechanical Analysis of Lower Extremity Joints According to Landing Types during Maximum Vertical Jump after Jump Landing in Youth Sports Athletes (유소년 스포츠 선수들의 점프착지 후 수직점프 동작 시 착지 유형에 따른 하지관절의 운동역학적 분석)

  • Jiho Park;Joo Nyeon Kim;Sukhoon Yoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.3
    • /
    • pp.110-117
    • /
    • 2023
  • Objective: The purpose of this study was to find out kinematic and kinetic differences the lower extremity joint according to the landing type during vertical jump movement after jump landing, and to present an efficient landing method to reduce the incidence of injury in youth players. Method: Total of 24 Youth players under Korean Sport and Olympic Committee, who used either heel contact landing (HCG) or toe contact landing (TCG) participated in this study (HCG (12): CG height: 168.7 ± 9.7 cm, weight: 60.9 ± 11.6 kg, age: 14.1 ± 0.9 yrs., career: 4.3 ± 2.9 yrs., TCG height: 174.8 ± 4.9 cm, weight: 66.9 ± 9.9 kg, age 13.9 ± 0.8 yrs., career: 4.7 ± 2.0 yrs.). Participants were asked to perform jump landing consecutively followed by vertical jump. A 3-dimensional motion analysis with 19 infrared cameras and 2 force plates was performed in this study. To find out the significance between two landing styles independent t-test was performed and significance level was set at .05. Results: HCG showed a significantly higher dorsi flexion, extension and flexion angle at ankle, knee and hip joints, respectively compared with those of TCG (p<.05). Also, HCG revealed reduced RoM at ankle joint while it showed increased RoM at knee joint compared to TCG (p<.05). In addition, HGC showed greater peak force, a loading rate, and impulse than those of TCG (p<.05). Finally, greater planta flexion moment was revealed in TCG compared to HCG at ankle joint. For the knee joint HCG showed extension and flexion moment in E1 and E2, respectively, while TCG showed opposite results. Conclusion: Compared to toe contact landing, the heel contact landing is not expected to have an advantage in terms of absorbing and dispersing the impact of contact with the ground to the joint. If these movements continuously used, performance may deteriorate, including injuries, so it is believed that education on safe landing methods is needed for young athletes whose musculoskeletal growth is not fully mature.