• Title/Summary/Keyword: landfills

Search Result 296, Processing Time 0.026 seconds

The Effects of Waste Leachate on the Eco-Physiological Characteristics of Populus euramericana

  • Woo, Su-Young
    • The Korean Journal of Ecology
    • /
    • v.22 no.6
    • /
    • pp.343-348
    • /
    • 1999
  • Populus euramericana has been identified as a possible species for use for phytoremediation of landfills. To identify the effects of waste leachate on the growth and physiological characteristics of Populus euramericana. four different treatments were applied to Populus euramericana seedlings: leachate solution (100% leachate). 25% dilution (75% leachate: 25% water. v/v), 50% dilution (50% leachate: 50% water. v/v) and control (100% tab water) were applied to Populus euramericana. Treatment with waste leachate significantly stimulated Populus euramericana height. diameter at root collar and biomass production relative to the water control. Chlorophyll contents. photosynthesis and transpiration of leachate irrigated-trees were significantly higher than those of water control. These results suggested that poplar could be a suitable species for phytoremediation in landfills because these species showed good growth performance and were capable of taking up waste leachate.

  • PDF

Multi-product Remanufacturing Planning on a Single Facility (단일 재생처리 설비를 이용한 다중 제품 재생계획)

  • Joo, Un Gi;Lee, Choong-ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.3
    • /
    • pp.240-247
    • /
    • 2005
  • Today's hightech society requires thousands of different products which ultimately result in billions of tons of materials discarded, most of which end up in landfills. Therefore industrial circles could not help thinking about environmental problems by regulations of government or pressures of consumer. Generally, the related research subjects are classified into both of environmentally conscious manufacturing and product recovery, where product recovery aims to minimize the amount of waste sent to landfills by recovering materials and parts from old or outdated products by means of recycling and remanufacturing (including reuse of parts and products). In this research, we constructed a model for remanufacturing various goods using a single facility and developed a dynamic programing(DP) algorithm based upon the optimal solution characterization. We showed the efficiency of the developed DP algorithm with a numerical example.

GROUNDWATER POLLUTION CONTROL IN UNCONTROLLED WASTE LANDFILLS (폐기물 매립지 지반내에서의 지하수오염제어)

  • Lee, Gwang-Yeol;Jang, Yeon-Su;Han, Il-Yeong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.03a
    • /
    • pp.75-82
    • /
    • 1994
  • Groundwater in waste landfills can be contarninated by leachates produced from wastes and flow down toward rivers. These accidents are easily discovered in uncontrolled landfill sites. In this study, applications for controlling groundwater pollution and protecting river pollution were studied using installation of cut-off walls around the waste landfill. Analyses for the efficiency and applicability of the cut-off wall were made under environmental, economical anc technical considerations. Cut-off walls were installed at the upgradient and the downgradient. prediction analyses for the hydraulic head distribution over the site were made for concerning with the final cover and without the final cover. Also, the hydraulic head distribution was predicted with well-pumping on both cases, upgradient cut-off wall and downgradient cut-off wall.

  • PDF

Evolution of Sudokwon Landfill: from Waste Containment to Energy Generation

  • Chung, Moon-Kyung;Kim, Yun-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.186-193
    • /
    • 2009
  • Since its opening in 1992, Sudokwon Landfill has become a landfill in which wastes generated from more than 22 million people are treated and disposed of. Its first phase landfill was closed in 2000 and the second phase landfill is in operation since then. The Korean environmental policies on refuse have drastically evolved for the last decade or so. From merely safe containment of wastes, the utilization of them as a source for energy generation and the minimization of waste volume to be filled in landfills are in the mainstream. Keeping in pace with the new trends, several challenging projects are in their way to blossom in Sudokwon Landfill. This paper briefs some important activities in the landfill. They are (1) geotechnical issues related to the construction and maintenance of the $1^{st}$ and $2^{nd}$ Landfills and (2) landfill gas and bioreactor which are recently emerging in the market.

  • PDF

Transport and Deposition Characteristics of Coarse Grained Soil According to the Flow Velocity and Grain Size (유속 및 입경에 따른 조립토의 이동 및 퇴적 특성)

  • Bong, Tae-Ho;Son, Young-Hwan;Kim, Kyu-Sun;Park, Jae-Sung;Kim, Dong-Geun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.11-17
    • /
    • 2016
  • Dredging and land reclamation works has actively carried out for the efficient use of land and secure of agricultural and industrial site. During the reclamation, a portion of landfills are lost from the desired location due to a variety of causes. However, these causes has been rarely studied, and water flow velocity has a great influence on the movement of landfills. For the economical and efficient reclamation, it is important to predict the movement of landfills in water. In this paper, an experimental study was carried out to investigate the deposition distance according to the flow velocity and soil grain size. We have made a large open-channel apparatus that can reproduce a laminar flow, and the deposition test was carried out on the four grain size (0.638, 1.425, 3.375, 7.125 mm) and four flow velocity (0.1, 0.3, 0.5, 0.67 m/s) with high definition video recording. As a results, average deposition distance increased with the flow velocity, and its relationship is shown linearly. For the grain size, the average deposition distance were drastically increased as the grain size becomes smaller.

A Study on the Waste Incinerator Location Problem in Seoul (서울시 쓰레기 소각장 입지에 관한 연구)

  • 이금숙;이희연
    • Journal of the Korean Regional Science Association
    • /
    • v.14 no.1
    • /
    • pp.91-107
    • /
    • 1998
  • Waste disposal problem is one of the most important social welfare indicators in urban area, because the volume of waste generated from urban area is remarkable. So far most waste of Seoul has been disposed at landfills. However, this landifill disposal method is confronted with several difficulties in recent. As public concern on environmental problem increases and autonomy system is settled down, local community people of the landfills refuse to receive the waste produced other places any more. It brought reginal confliction problem between waste sending and receiving by refusing to accept waste from certain region. Furthermore, it is difficult to find another place to fill up the waste, while the existing landfiis is reached at the limit in the near future. In terms of environmental aspects landfill method is not the best way to dispose waste. It contaminates the soil and ground/underground water by leaking water containing many serious pollutants as well as offensive oder. In terms of equity, this waste disposal method is not fair. Environmental pollution causes damage to residence near to the landfills, while the waste produced other places. In order to satisfy the equity aspect, the waste generated a region should be disposed within the region. Incineration of Waste has been provided as the alternative. Government plans to construct waste incinerator in every anatomy, so the waste produced by local community is disposed within their local autonomous area. However, the location decision is not easy, since waste incinerator is one of the facilities to the community people. We can not apply the existing location models for this problem, because they show strong NIMBY phenomenon for the location. The location of waste incinerator should be determined very carefully with consideration of various location factors and criteria. This study proposes a methodology for determining the location of the waste incinerators by utilizing GIS, which is a power research tool for location decision where various geographical factors related. We drive the location factors which should be considered in the determination of waste incinerators. They involve environmental, socio-economic, and institutional factors. In first, we eliminate the area which is located within the environmental location criteria such as slope, fault line, distance to river, and then eliminate ares which is conflict with the social and institutional criteria.

  • PDF

A Study on Expanding the Recycling of Coal Ash for Minimizing Environmental Impact Imposed by the Establishment of Thermal Power Plant Ash Ponds (화력발전소 회처리장 조성에 따른 환경영향 최소화를 위한 석탄회 재활용 확대방안에 관한 연구)

  • Suh, Dong-Hwan;Maeng, Jun-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.472-486
    • /
    • 2015
  • More than 8M tons of coal ashes are generated from coal-fired thermal power plants every year in Korea. Excluding the recycled portion (Current recycling rate: approximately 70%), all of the generated coal ashes end up in coastal landfills. Currently, the difficulties faced in establishing new ash treatment fields are attributed to the concerns raised over the environmental impacts caused by the landfills at individual plant facilities. Given the number of coal-fired thermal power plants to be built in the future (reflected in the 7th Basic Plan for Long-term Electricity Supply and Demand), building new ash treatment fields or seeking a new treatment plan seems unavoidable. Based upon a review of coal ash and its management, this study concluded that the most effective and fundamental strategy to minimize the environmental impacts resulting from coal ash landfills is to avoid constructing new coal-fired powerplants and furthermore, suggests that the practice of beneficial use and recycling the produced coal wastes should be encouraged.

Mitigating $CH_4$ Emissions in Semi-Aerobic Landfills: Impacts of Operating Conditions on Abundance and Community Structure of Methanotrophs in Cover Soils

  • Li, Huai;Chi, Zi-Fang;Lu, Wen-Jing;Wang, Hong-Tao
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.993-1003
    • /
    • 2013
  • Methanotrophs are the most important sink of $CH_4$, which is a more highly potent greenhouse gas than $CO_2$. Methanotrophic abundance and community diversity in cover soils from two typical semi-aerobic landfills (SALs) in China were detected using real-time polymerase chain reaction (real-time-PCR) and denaturing gradient gel electrophoresis (DGGE) based on 16S rRNA genes, respectively. Real time-PCR showed that Type I methanotrophs ranged from $1.07{\times}10^6$ to $2.34{\times}10^7$ copies/g soil and that of Type II methanotrophs from $1.51{\times}10^7$ to $1.83{\times}10^8$ copies/g soil. The ratio of Type II to Type I methanotrophic copy numbers ranged from 5.61 to 21.89, indicating that Type II methanotrophs dominated in SAL. DGGE revealed that Type I methanotrophs responded more sensitively to the environment, changing as the community structure varied with different soil types and locations. Methylobacter, Methylosarcina, and Methylomicrobium for Type I, and Methylocystis for Type II were most prevalent in the SAL cover layer. Abundant interflow $O_2$ with high $CH_4$ concentration in SALs is the reason for the higher population density of methanotrophs and the higher enrichment of Type II methanotrophs compared with anaerobic landfills and other ecosystems, which proved a conclusion that increasing the oxygen supply in a landfill cover layer would greatly improve $CH_4$ mitigation.

A Fundamental Study on Biogas from Municipal Solid Waste (도시(都市) 폐기물(廢棄物)로부터 Biogas 생산(生産)에 관한 기초적(基礎的) 연구(研究))

  • Choi, Eui So;Lee, Jung Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.31-40
    • /
    • 1987
  • To evaluate the fundamental factors in the recovery of biogas from the landfills composed of about 40% of volatile solids, the experiments for the samples from the operating landfill site as well as from the laboratory-scale lysimeter were undertaken. In the test of landfills, the change of moisture content, the content of volatile solids (VS), the ratio of saccharide to ligin(Y) and the estimation of landfills reclaimed and the correlationship between VS and Y were investigated. During the experiments with laboratory-lysimeter, temperature, pH, gas production rate, the composition of gas were measured. The mathematical model derived from the the rate coefficient of gas production(k) were proposed from the results of this investigation. Furthermore, the proposed mathematical model from this study was verified with the obtained values from experiments.

  • PDF