• Title/Summary/Keyword: landfill stabilization

Search Result 83, Processing Time 0.024 seconds

The Assessment of Stabilization of Open-dumping Landfill Leachate - A Case Study of Noeun Landfill - (비위생매립지 침출수의 안정화 평가 - 노은매립지 사례연구 -)

  • Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.3
    • /
    • pp.115-124
    • /
    • 2004
  • To utilize a closed municipal solid waste landfill site in environmentally secure conditions, it is necessary to verify the stabilization level of landfill leachate. To assess leachate stabilization of an open-dumping municipal solid waste landfill (Noeun Landfill) which is located at the upper drainage basin of Namhan River which flows into Lake Paldang utilized for Seoul Metropolitan water supplies, the surrounding characteristics of the landfill site was surveyed. After then, leachate, groundwater and soil samples from this landfill were chemically analyzed, and the analysis results were evaluated by "The Criteria of Landfill Waste Stabilization(CLWS)", "Discharge Criteria of Landfill Leachate", "The Criteria of Domestic Use in Groundwater Quality", and "Soil Contamination Criteria" promulgated by Korean Ministry of Environment. The closed open-dumping landfill was equipped with the final soil cover, 3 groundwater monitoring wells and poor landfill gas extraction devices for the post-closure management of the landfill. BOD/CODcr ratios in leachate were less than or slightly higher than 1/10. This results seemed to imply that the leachate stabilization level of this landfill based on the CLWS was almost completed. Qualities of groundwater sampled from monitoring wells located at outside of landfill were adequate for "The Criteria of Domestic Use in Groundwater Quality". Finally, concentrations of soil contaminants that were likely to be influenced by this landfill site were adequate to "Soil Contamination Criteria".

Assessment on Stabilization of Open-dumping Landfill Gas - A Case Study of Salmi Landfill - (사용종료된 비위생매립지의 매립가스 안정화 평가 - 살미매립지 사례연구 -)

  • Hong, Sang-Pyo;Kim, Kwang-Yul
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.6
    • /
    • pp.365-375
    • /
    • 2005
  • For managing and utilizing a closed municipal solid waste landfill site in environmentally secure conditions, it is necessary to verify the stabilization level of landfill gas(LFG) and waste. For assessing LFG and waste stabilization of an open-dumping municipal solid waste landfill (Salmi Landfill) which is located at the vicinity of Chungju Reservoir which flows into Paldang Reservoir that has been used for Seoul Metropolitan water supplies, the history and the surrounding characteristics of the landfill site were surveyed. In this study, waste and LFG samples obtained from landfill site were physically and chemically analyzed, and then the analysis results were evaluated on the basis of 'The Criteria of Landfill Waste Stabilization(CLWS)' that were promulgated by Korean Ministry of Environment. Based on LFG composition of Salmi landfill, $CH_4$ was as high as 68%. In CLWS regulation, the stabilization criteria of $CH_4$ should be lower than 5%, and the criteria of C/N ratio should also be lower than 1/10. The result showed that C/N ratio of landfilled waste ranged 17.4~24.7. From this results, it was concluded that the LFG and C/N ratio stabilization level of this landfill based on the CLWS were still actively proceeding.

Assessment on Stabilization of Open-dumping Landfill Based on Leachate - A Case Study of Salmi Landfill - (침출수 특성 분석을 통한 사용종료 비위생매립지 안정화 평가 - 살미매립지 사례연구 -)

  • Hong, Sang-Pyo;Kim, Kwang-Yul
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.5
    • /
    • pp.299-308
    • /
    • 2006
  • To utilize a closed municipal solid waste landfill site in environmentally secure conditions, it is necessary to verify the stabilization level of landfill leachate. To assess leachate stabilization of an open-dumping municipal solid waste landfill site (Salmi Landfill) which is located at the vicinity of Chungju Reservoir which flows into Paldang Reservoir utilized as Seoul Metropolitan water supplies, the landfill history and surrounding characteristics of the landfill site were surveyed. In this investigation, waste, leachate, groundwater and surfacewater samples from this landfill were physically and chemically analyzed, and the analysis results were evaluated by 'The Criteria of Landfill Waste Stabilization (CLWS)', 'Discharge Criteria of Landfill Leachate', 'The Criteria of Domestic Use in Groundwater Quality', and 'The Criteria of Domestic Use in Surfacewater Quality' that promulgated by Korean Ministry of Environment. From the analysis results on the Salmi open-dumping landfill, C/N ratio was 18.9 and $BOD/COD_{Cr}$ ratios in leachate were higher than 1/10. Based on the CLWS, this results seemed to imply that the process of leachate stabilization at this landfill was still proceeding.

Estimation of Landfill Stabilization using Carbon-based Mass Balance Evaluation

  • Chun, Seung-Kyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.2
    • /
    • pp.22-28
    • /
    • 2016
  • In order to evaluate landfill stabilization based on organic carbon, stoichiometric analysis and a biological methane potential (BMP) test based on modeling were performed at the 2nd Sudokwon Landfill Site. Mass balance analysis through a BMP test proved to be more adaptable for evaluation, and it showed that 28.9% of landfill organic carbon was expected to remain by 2046, 30 years after landfill closure. The organic carbon ratio of total landfill waste for 2046 is forecasted as 2.9% in demolition waste and 5.1% in household waste, and, if one were to consider plastic as an organic waste, the ratios would increase to 15.9% and 28.3%, respectively. Therefore, it seems that organic matter biodegradation facilitating measures such as bioreactor landfill technology and preemptive recovery of combustible waste are necessary to shorten post closure management periods and to meet the landfill stabilization guidelines more safely.

Stabilization of Industrial Wastes Landfill using Lab-lysimeter (모형매립조를 이용한 산업폐기물 매립지의 안정화 조사 기초 연구)

  • 박동일;최석규;홍종순;장인용
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.9-18
    • /
    • 1998
  • An experimental research was conducted to establish primary data for the stabilization assessment of industrial wastes landfill with analysis of waste components and investigation of leachate and gas generation, using three sets of lysimeter as experimental apparatus. Comparing results of lysimeter from data of landfill, it is suggested that lysimeter of this study can be used to accomplish the stabilization assessment of the real landfill site. Moisture content was lower as landfill period was older and combustible component was the highest in lysimeter C. The C/N ratio of waste was 7.4~14.4 and, with the elemental analysis, the theoretical gas generation rate based on the modified Buswell equation was 0.47~0.49 $m^3/kg-dry$ waste in lysimeter C. Considering the C/N ratio of leachate, it is concluded that the addition of carbon source is needed to biodegrade leachate hereafter. Gas generation rate($m^3/kg-dry$ waste) from lysimeter A, B and C was 0.0009, 0.014 and 0.0067, respectively, and different from each other according to the landfill period of wastes. The results in this study show that the biodegradation of microorganism for stabilization of landfill was inhibited and more activated in acidogenic step than in methanogenic of anaerobic degradation.

  • PDF

Uncontrolled Landfill Maintenance Plans through the Environmental Evaluation (환경성평가를 통한 비위생 매립지 정비방안)

  • Lee, Hae-Seung
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.3
    • /
    • pp.59-71
    • /
    • 2008
  • In this study, we intend to present the uncontrolled landfill maintenance plans by diversely reviewing the operating conditions of landfill and environmental effects and economical issues resulted from the operation of landfill for the purpose of suggesting the optimal maintenance plans applicable to the uncontrolled landfill and unused landfill located in Korea. We perform the basic and precise surveys against three landfill sites showing the biggest problem out of 8 unsanitary landfills sites located in Y County. We compare and review the treatment plans prepared and operated by the N Landfill. The compared and reviewed results show that the local stabilization plan is more effective than the excavation and transfer treatment plan when considering the economic efficiency only. However, the excavation and transfer treatment plan is valid when considering the diverse elements. The G Landfill is operated with separated into living waste landfill section and construction waste landfill section. However, some landfill gas collection bores or holes are installed in its living waste landfill section, which has not been used for about 20 years, as a part of follow-up control. The element causing the environmental damage is considerably reduced in its living waste landfill section. However, the effort to keep the follow-up control through the local stabilization work is required. The landfill is under processing in the construction waste landfill section. However, most of buried wastes are the inorganic wastes such as waste materials and concrete, so the maintenance plan focused on the use of top land by installing the local stabilization facilities is considered as an effective plan. The landfill is under processing in the K Landfill. It seems to be difficult to maintain this landfill through the local stabilization. The excavation and transfer treatment plan to completely remove the potential environmental pollution source is considered as the valid plan.

A Fundermental Study on Stabilization in Municipal Waste Landfill Site (도시폐기물 매립지의 안정화에 관한 기초연구)

  • 김은호;김순호
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.56-62
    • /
    • 2001
  • The investigation was carried out to analyze the generation and the composition of landfill gas generated from inserted pipe wells into the underground by boring operation and also study the undecomposed waste characteristics by open-cut test at S. waste landfill site in Pusan city. Pilot test was conducted for stabilization. The experimental results from this study were summerized as follows. ; Since COD matter was easuer decomposed than COD matter for continuously biological stabilization in underground, it seemed that BOD and CO $D_{Mn}$ were in the range of 854~4,813mg/$\ell$ and 1,156~6,977mg/$\ell$ and their ratio were generally as high as 0.55~0.74. As C $H_4$ compositions of generated gas were measured in the range of 37.36~60.1%, we could know that C $H_4$ gas was actively generated. Organic matters by open-cut test averaged 13.4~16.6% at each landfill layer, and considering rate of combustible compositions(36.2~66.5%) for landfilling wastes, they have been actively decomposed. The measured and theoretical values of generated gas in waste landfill site were almost similar to C $H_4$ 50.0% and 53.4%, $CO_2$ 39.63% and 45.24%, and after 0.5$^{\circ}C$ with heavy depth and long landfill period. From the results of pilot test for stabilization, after 180 days organic matters were actively decomposed beyond 2.2 times in facultative aerobic lystimeter(B) to exsiting anaerobic lysimeter(A). Therefore, it seemed that landfill site was of benefical to the conversion of facultative aerobic for stabilization.

  • PDF

A Study on Variation of Landfill Gases in Completed Refuse Landfill Site after the Stabilization (사용종료 매립지의 지반안정화 후 매립가스의 변화)

  • Lee, Min-Hee;Ju, So-Young;Park, Jun-Kyu;Yeon, Ik-Jun;Kim, Kwang-Yul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2004
  • The reclaimed waste layer in a completed refuse small landfill site was stabilized by JSP(Jumbo Special Pattern System) method. There were some variations of landfill gases(LFGs) after the stabilization. This study investigated the landfill gases emitted from a open dumping landfill site. We measured concentration of landfill gases before and after the construction, and 28 months later. As a result, the concentrations of $H_2S$ and $NH_3$ gases before the construction were 123.51ppm and 171.54ppm, respectively. These values were higher than TWA(Time Weighted Average) values. But the concentrations of $H_2S$ and $NH_3$ gases after the construction were 55.59ppm and 20.51ppm, and they also decreased 9.04ppm and 11.82ppm in 28 months. $CH_4$ and other landfill gases after the construction were little or a little detected in the landfill site. Hence we found out that concentrations or classes of landfill gases causing some problems extremely decreased by way of the stabilization.

  • PDF

A Study on Stabilization of Landfill by Air Ventilation in Field (공기주입방식을 통한 쓰레기 안정화의 현장적용에 관한 연구)

  • Lee, Hwan;Lee, Chae-young;Jeon, Yeon-ho;Kim, Kyung;Kim, Doo-il;Lee, Cheol-hyo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.121-128
    • /
    • 2000
  • Landfill and lysimeter experiments were conducted to estimate the optimum air injection method for the degradation of waste in landfill and the pre-stabilization. Continuous injection with low pressure and quantity can be effective for pre-stabilization of old landfill due to the lower contents of volatile solids in landfill. Air injection and landfill gas (LFG)extraction showed that the SVE (Soil Vapor Extraction) effect by air ventilation was more significant than the biodegradation of organics. Theses results suggested that they could accelerate the biological stabilization of organic waste in landfills. It is also expected that they would reduce the problems including gas emission during the landfill mining, separation and/or transportation to such levels that might be discharged directly to the atmosphere or with minimal treatment, if required.

  • PDF

The Assessment for Environmental Stabilization in Open Dumping Landfill Site from Physical Composition and Gas Analysis - A Case Study of Noeun Landfill - (비위생 매립지의 물리적 조성 및 가스 분석을 통한 안정화 평가 - 노은 매립지 사례 연구 -)

  • Lee, Min-Hee;Jang, Byoung-In;Yun, Cheol;Yeon, Ik-Jun;Kim, Kwang-Yul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.4
    • /
    • pp.27-35
    • /
    • 2005
  • A case study of the assessment for environmental stabilization in open dumping landfill site was carried out physical composition, total solid, moisture, and landfill gas(LFG) analysis in landfill site. The result of physical ratio were represented combustibles 23.64% and incombustibles 76.36%, TS 77.69%, VS 74.24%, FS 25.75%. The biodegradable organic matters were almost degraded and the result of the landfill gas showed that the $CH_4$ gas were measured as 4.5%. As the result of the assessment on the open dumping landfill it appears that this landfill is stabled for the maturation phase and formation $CO_2$ concentration lower than 15%.

  • PDF