• Title/Summary/Keyword: landfall tropical cyclone

Search Result 16, Processing Time 0.028 seconds

Observational analysis of wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015)

  • Lin Xue;Ying Li;Lili Song
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.315-329
    • /
    • 2023
  • We investigated the wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015) based on observations from wind towers in the coastal areas of Guandong province. Typhoon Mujigae made landfall in this region from 01:00 UTC to 10:00 UTC on October 4, 2015. In the region influenced by the eyewall of the tropical cyclone, the horizontal wind speed was characterized by a double peak, the wind direction changed by >180°, the vertical wind speed increased by three to four times, and the angle of attack increased significantly to a maximum of 7°, exceeding the recommended values in current design criteria. The vertical wind profile may not conform to a power law distribution in the near-surface layer in the region impacted by the eyewall and spiral rainband. The gust factors were relatively dispersed when the horizontal wind speed was small and tended to a smaller value and became more stable with an increase in the horizontal wind speed. The variation in the gust factors was the combined result of the height, wind direction, and circulation systems of the tropical cyclone. The turbulence intensity and the downwind turbulence energy spectrum both increased notably in the eyewall and spiral rainband and no longer satisfied the assumption of isotropy in the inertial subrange and the -5/3 law. This result was more significant in the eyewall area than in the spiral rainband. These results provide a reference for forecasting tropical cyclones, wind-resistant design, and hazard prevention in coastal areas of China to reduce the damage caused by high winds induced by tropical cyclones.

Relationship between Korean Peninsula Landfalling Tropical Cyclones and Interannual Climate Variabilities

  • Choi, Ki-Seon;Kim, Baek-Jo;Byun, Hi-Ryong
    • Journal of the Korean earth science society
    • /
    • v.29 no.5
    • /
    • pp.375-385
    • /
    • 2008
  • The relationship between two interannual climate variabilities and the frequency of tropical cyclone (TC) that landed over the Korean Peninsula (KP) has investigated for the period of 1951-2004. In the analysis of the relationship between KP-landfall TC frequency and the ENSO phase, most TCs of C-14 (TCs that do not pass through mainland China before landing the KP) and C-23 (TCs that pass through mainland China before landing the KP) tended to more land in the warm phase than normal and cold phases. However, TC intensity at landfall was stronger in the cold and normal phases. In the analysis of the relationship between KP-landfall TC frequency and Arctic Oscillation (AO) phase, the TCs of C-14 tended to more land in the positive (POS) phase of AO and the negative (NEG) phase of AO for C-23. It was found that AO index was negatively correlated with the Ni$\tilde{n}$o-3.4 index. And then the TCs of C-14 landed more frequently over the KP in the AO POS - Ni$\tilde{n}$o-3.4 NEG phases and in the AO NEG - Ni$\tilde{n}$o-3.4 POS phases for the TCs of C-23.

A Possible Relation of Pacific Decadal Oscillation with Weakened Tropical Cyclone Activity over South Korea (한국에 영향을 미치는 약해진 열대저기압 활동과 태평양 10년 주기 진동과의 관계)

  • Chang, Minhee;Park, Doo-Sun R.;Kim, Dasol;Park, Tae-Won
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • Although tropical cyclones with wind speeds weaker than 17 ms-1 (weak tropical cyclones: WTCs) can cause significant damage, particularly over the Seoul metropolitan area, only a few studies have focused on WTC activity over South Korea. In this study, we found that WTC activity is likely associated with the Pacific Decadal Oscillation (PDO). During the negative phases of the PDO, landfall frequency of WTCs increased significantly compared to the positive phases at 95% confidence level. When related to the negative phases of the PDO, a positive relative vorticity anomaly is found in the northern sector of the western North Pacific while a negative relative vorticity anomaly and enhanced vertical wind shear prevail in the southern sector of the WNP. These factors are favorable for the northward shift of the genesis location of tropical cyclones on average, thereby reducing the total lifetime of WTCs. Moreover, a high-pressure anomaly over the Japanese islands would shift a tropical cyclone track westward in addition to the landfall location. Consequently, the effects of the topographical friction and the Yellow Sea Bottom Cold Water on a tropical cyclone may increase. These conditions could result in a weaker lifetime maximum intensity and landfall intensity, ultimately resulting in WTCs becoming more frequent over South Korea during the negative phases of the PDO.

Observed characteristics of tropical cyclone vertical wind profiles

  • Giammanco, Ian M.;Schroeder, John L.;Powell, Mark D.
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.65-86
    • /
    • 2012
  • Over the last decade substantial improvements have been made in our ability to observe the tropical cyclone boundary layer. Low-level wind speed maxima have been frequently observed in Global Positioning System dropwindsonde (GPS sonde) profiles. Data from GPS sondes and coastal Doppler radars were employed to evaluate the characteristics of tropical cyclone vertical wind profiles in open ocean conditions and at landfall. Changes to the mean vertical wind profile were observed azimuthally and with decreasing radial distance toward the cyclone center. Wind profiles within the hurricane boundary layer exhibited a logarithmic increase with height up to the depth of the wind maximum.

A Simple Regression Model for Predicting the TC Intensity Change after Landfall over the Korean Peninsula (한반도 상륙 태풍의 강도변화 예측을 위한 단순회귀모형 개발)

  • Choi, Ki-Seon;Kim, Baek-Jo;Lee, Ji-Yun
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.135-145
    • /
    • 2007
  • We developed a simple regression model for predicting the intesity change (central pressure) of major tropical cyclones (TCs) for 24 hours after landfall using 51 TC cases which landed over the Korean Peninsula for 1951-2004. Clusters 1 and 4 with a relatively strong intensity of TC after landfall classified by Choi and Kim (2007) are used to develop a statistical model for the prediction of TC intensity change. Predicting parameters (falling constants) in the regression models $(P_t=P_0+alnt)$ are 6.46 and 10.11 for clusters 1 and 4, respectively. It might be mentioned that there is some feasibility in employing a simple regression model developed in this study for TC intensity change after landfall for operational purpose of TC forecasting compared with RSMC-Tokyo best-track in both TC cases of Clusters 1 and 4 and Ewiniar (0603) case, but the room for improvement of model still remains for further study.

Influence of Typhoon Landfall and Its Track Characteristics in Gyeongsangbuk-do (경상북도에서 태풍에 의한 영향과 유형별 진로 특성 분석)

  • Park, Doo-Seon;Ho, Chang-Hoi;Hwang, Jongkook
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.525-532
    • /
    • 2008
  • This study has examined influences of tropical cyclone (TC) landfalls on the Gyoengsangbuk-do region, located in southeast of Korea, for the period 1978-2006. This region is known as one of major pass ways of landfalling TCs, and has many cultural properties including Bulguksa, Sukgulam, etc. Thus the influences caused by TCs (i.e., TC damages) may be larger than elsewhere in the nation. Here, TC influence is defined as the cases of strong instantaneous wind speed (${\geq}20ms^{-1}$) and heavy rainfall (${\geq}100mmday^{-1}$) at each station. This study analyzed long-term trends ofTC influences and the relationship with TC tracks are examined. As a result, it is found that large increase of the heavy rainfall cases along the coastal region. By contrast, there are marginal changes in the strong wind speed associated with TC landfalls. Further, it is also found that the cases of the heavy rainfall only are related with TCs passing through the Yellow Sea and the cases of both the strong wind and the heavy rainfall are related with TCs landing from southern Korea.

Tropical cyclone activity over the western North Pacific associated with Pacific-Japan teleconnection pattern and its impacts on extreme events over the Korean peninsula

  • Kim, Jong-Suk;Zhou, Wen;Li, Cheuk-Yin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.38-38
    • /
    • 2012
  • The East Asia (EA) region including China, Taiwan, Japan, and Korea are especially vulnerable to hydrometerological extremes during the boreal summer (June-September). This study, therefore, pursued an exploratory analysis to improve better understanding of the potential impacts of the two types of PJ patterns on WNP Tropical cyclone (TC) activities and TC-induced extreme moisture fluxes over Korea's five major river basins. This study shows that during positive PJ years, the large-scale atmospheric environments are more favorable for the TC activities than those in negative PJ years. During positive PJ year, it is found that there are weaker wind shear, stronger rising motion, as well as large relative humidity over the Korean peninsula (KP) compared to negative PJ years. As a result, TCs making landfall are more exhibited over the southeastern portions of South Korea. Despite the relatively modest sample size, we expect that insights and results presented here will be useful for developing a critical support system for the effective reduction and mitigation of TC-caused disasters, as well as for water supply management in coupled human and natural systems.

  • PDF

Wind characteristics observed in the vicinity of tropical cyclones: An investigation of the gradient balance and super-gradient flow

  • Tse, K.T.;Li, S.W.;Lin, C.Q.;Chan, P.W.
    • Wind and Structures
    • /
    • v.19 no.3
    • /
    • pp.249-270
    • /
    • 2014
  • Through comparing the mean wind profiles observed overland during the passages of four typhoons, and the gradient wind speeds calculated based on the sea level pressure data provided by a numerical model, the present paper discusses, (a) whether the gradient balance is a valid assumption to estimate the wind speed in the height range of 1250 m ~ 1750 m, which is defined as the upper-level mean wind speed, in a tropical cyclone over land, and (b) if the super-gradient feature is systematically observed below the height of 1500 m in the tropical cyclone wind field over land. It has been found that, (i) the gradient balance is a valid assumption to estimate the mean upper-level wind speed in tropical cyclones in the radial range from the radius to the maximum wind (RMW) to three times the RMW, (ii) the super-gradient flow dominates the wind field in the tropical cyclone boundary layer inside the RMW and is frequently observed in the radial range from the RMW to twice the RMW, (iii) the gradient wind speed calculated based on the post-landfall sea level pressure data underestimates the overall wind strength at an island site inside the RMW, and (iv) the unsynchronized decay of the pressure and wind fields in the tropical cyclone might be the reason for the underestimation.

A Definition and Criterion on Typhoons Approaching to the Korean Peninsula for the Objective Statistical Analysis (객관적인 태풍 통계자료 구축을 위한 '한반도 근접 태풍'의 정의 및 기준 설정)

  • Moon, Il-Ju;Choi, Eu-Soo
    • Atmosphere
    • /
    • v.21 no.1
    • /
    • pp.45-55
    • /
    • 2011
  • A definition on the tropical cyclone (TC) that influenced the Korean Peninsula (KP), the KP-influence TC, is widely used in the TC communities, but its criterion is not clear mainly due to the ambiguity and subjectiveness of the term such as 'influence', which led to the inconsistent TC statistical analysis. This study suggests a definition and criterion on the TC approaching to the KP (KP-approach TC) additionally, which is more obvious and objective than the KP-influence TC. In this study, the criterion on the KP-approach TC is determined when the TC's center from the RSMC best track data encounters the box areas of $28^{\circ}N{\sim}40^{\circ}N$ and $120^{\circ}E{\sim}138^{\circ}E$. The range is chosen by finding a minimum area that includes all official KP-influence TCs except three TCs that affected the KP as a tropical depression (TD). Statistical analysis reveals that, among total 1,537 TCs that occur in the western North Pacific during 1951-2008, the KP-approach TC was 472, the KP-influence TC was 187, and the KP-landfall TC was 87. August was the month that the largest TCs approach and influence to the KP. Finally, this paper suggests to determine the KP-influence TC by the strong wind and heavy rain advisories in the KP based on the observation after the storm's passage.

Characteristics of Typhoon Jelawat Observed by OSMI, TRMM/PR and QuikSCAT

  • Lim, Hyo-Suk;Choi, Gi-Hyuk;Kim, Han-Dol
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.293-303
    • /
    • 2000
  • The typhoon Jelawat, which was formed over the tropical Pacific ocean on August 1, 2000 and made a landfall over China on August 10, 2000, was observed by Korea Multi-purpose Satellite (KOMPSAT-1) Ocean Scanning Multispectral Imager (OSMI), Tropical Rainfall Measuring Mission (TRMM)/Precipitation Radar(PR) and Quick Scatterometer (QuikSCAT). In spite of discontinuous observation, important mesoscale features of typhoon depending on life cycle were detected prominently. It is possible to distinguish on the OSMI photograph between the eye-wall convection and the stratiform and other convective clouds near the center of typhoon Jelawat. The TRMM/PR observations show quite clearly the eye-wall convection, stratiform regions, and convective bands. Vertical cross section of rainfall in the genesis stage of typhoon Jelawat exhibits circular ring of intense convection surrounding the eye. The mature stage of typhoon Jelawat consists of a strong rotational circulation with clouds which are well organized about a center of low pressure. The OSMI, TRMM/PR and QuikSCAT measurements presented here agree qualitatively with each other and provide a wealth of information on the structure of typhoon Jelawat.