• Title/Summary/Keyword: land-use/land cover

Search Result 523, Processing Time 0.022 seconds

Assessment of National Soil Loss and Potential Erosion Area using the Digital Detailed Soil Maps (수치 정밀토양도를 이용한 전국 토양 유실량의 평가 및 침식 위험지역의 분석)

  • Jung, Kang-Ho;Sonn, Yeon-Kyu;Hong, Seok-Young;Hur, Seung-Oh;Ha, Sang-Keon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.59-65
    • /
    • 2005
  • This study was performed to estimate the soil loss on a national scale and grade regions with the potential risk of soil erosion. Universal soil loss equation (USLE) for rainfall and runoff erosivity factors (R), cover management factors (C) and support practice factors (P) and revised USLE for soil erodibility factors (K) and topographic factors (LS) were used. To estimate the soil loss, the whole nation was divided into 21,337 groups according to city county, soil phase and land use type. The R factors were high in the southern coast of Gyeongnam and Jeonnam and part of the western coast of Gyeonggi and low in the inland and eastern coast of Gyeongbuk. The K factors were higher in the regions located on the lower streams of rivers and the plain lands of the western coast of Chungnam and Jeonbuk. The average slope of upland areas in Pyeongchang-gun was the steepest of 30.1%. The foot-slope areas from the Taebaek Mountains to the Sobaek Mountains had steep uplands. Total soil loss of Korea was estimated as $50{\times}10^6Mg$ in 2004. The potential risk of soil erosion in upland was the severest in Gyeongnam and the amount of soil erosion was the greatest in Jeonnam. The regions in which annual soil loss was estimated over $50Mg\;ha^{-1}$ were graded as "the very severe" and their acreage was $168{\times}10^3ha$ in 2004. The soil erosion maps of city/county of Korea were made based on digital soil maps with 1:25,000 scale.

Sensitivity Analysis for CAS500-4 Atmospheric Correction Using Simulated Images and Suggestion of the Use of Geostationary Satellite-based Atmospheric Parameters (모의영상을 이용한 농림위성 대기보정의 주요 파라미터 민감도 분석 및 타위성 산출물 활용 가능성 제시)

  • Kang, Yoojin;Cho, Dongjin;Han, Daehyeon;Im, Jungho;Lim, Joongbin;Oh, Kum-hui;Kwon, Eonhye
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1029-1042
    • /
    • 2021
  • As part of the next-generation Compact Advanced Satellite 500 (CAS500) project, CAS500-4 is scheduled to be launched in 2025 focusing on the remote sensing of agriculture and forestry. To obtain quantitative information on vegetation from satellite images, it is necessary to acquire surface reflectance through atmospheric correction. Thus, it is essential to develop an atmospheric correction method suitable for CAS500-4. Since the absorption and scattering characteristics in the atmosphere vary depending on the wavelength, it is needed to analyze the sensitivity of atmospheric correction parameters such as aerosol optical depth (AOD) and water vapor (WV) considering the wavelengths of CAS500-4. In addition, as CAS500-4 has only five channels (blue, green, red, red edge, and near-infrared), making it difficult to directly calculate key parameters for atmospheric correction, external parameter data should be used. Therefore, thisstudy performed a sensitivity analysis of the key parameters (AOD, WV, and O3) using the simulated images based on Sentinel-2 satellite data, which has similar wavelength specifications to CAS500-4, and examined the possibility of using the products of GEO-KOMPSAT-2A (GK2A) as atmospheric parameters. The sensitivity analysisshowed that AOD wasthe most important parameter with greater sensitivity in visible channels than in the near-infrared region. In particular, since AOD change of 20% causes about a 100% error rate in the blue channel surface reflectance in forests, a highly reliable AOD is needed to obtain accurate surface reflectance. The atmospherically corrected surface reflectance based on the GK2A AOD and WV was compared with the Sentinel-2 L2A reflectance data through the separability index of the known land cover pixels. The result showed that two corrected surface reflectance had similar Seperability index (SI) values, the atmospheric corrected surface reflectance based on the GK2A AOD showed higher SI than the Sentinel-2 L2A reflectance data in short-wavelength channels. Thus, it is judged that the parameters provided by GK2A can be fully utilized for atmospheric correction of the CAS500-4. The research findings will provide a basis for atmospheric correction of the CAS500-4 in the future.

Habitat Quality Analysis and Evaluation of InVEST Model Using QGIS - Conducted in 21 National Parks of Korea - (QGIS를 이용한 InVEST 모델 서식지질 분석 및 평가 - 21개 국립공원을 대상으로 -)

  • Jang, Jung-Eun;Kwon, Hye-Yeon;Shin, Hae-seon;Lee, Sang-Cheol;Yu, Byeong-hyeok;Jang, Jin;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.1
    • /
    • pp.102-111
    • /
    • 2022
  • Among protected areas, National Parks are rich in biodiversity, and the benefits of ecosystem services provided to human are higher than the others. Ecosystem service evaluation is being used to manage the value of national parks based on objective and scientific data. Ecosystem services are classified into four services: supporting, provisioning, regulating and cultural. The purpose of this study is to evaluate habitat quality among supporting services. Habitat Quality Model of InVEST was used to analyze. The coefficients of sensitivity and habitat initial value were reset by reflecting prior studies and the actual conditions of protected areas. Habitat quality of 21 national parks except Hallasan National Park was analyzed and mapped. The value of habitat quality was evaluated to be between 0 and 1, and the closer it is to 1, the more natural it is. As a result of habitat quality analysis, Seoraksan and Taebaeksan National Parks (0.90), Jirisan and Odaesan National Parks (0.89), and Sobaeksan National Park (0.88) were found to be the highest in the order. As a result of comparing the area and habitat quality of 18 national parks except for coastal-marine national parks, the larger the area, the higher the overall habitat quality. Comparing the value of habitat quality of each zone, the value of habitat quality was high in the order of the park nature preservation zone, the park nature environmental zone, the park cultural heritage zone, and the park village zone. Considering both the analysis of habitat quality and the legal regulations for each zone of use, it is judged that the more artificial acts are restricted, the higher the habitat quality. This study is meaningful in analyzing habitat quality of 21 National Parks by readjusting the parameters according to the situation of protected areas in Korea. It is expected to be easy to intuitively understand through accurate data and mapping, and will be useful in making policy decisions regarding the development and preservation of protected areas in the future.