• 제목/요약/키워드: land-surface-model

검색결과 560건 처리시간 0.034초

전지구 고해상도 수문모델 적용을 위한 격자유량 추정 방법 적용 연구 (Application of a Method Estimating Grid Runoff for a Global High-Resolution Hydrodynamic Model)

  • 류영;지희숙;황승언;이조한
    • 대기
    • /
    • 제30권2호
    • /
    • pp.155-167
    • /
    • 2020
  • In order to produce more detailed and accurate information of river discharge and freshwater discharge, global high-resolution hydrodynamic model (CaMa-Flood) is applied to an operational land surface model of global seasonal forecast system. In addition, bias correction to grid runoff for the hydrodynamic model is attempted. CaMa-Flood is a river routing model that distributes runoff forcing from a land surface model to oceans or inland seas along continentalscale rivers, which can represent flood stage and river discharge explicitly. The runoff data generated by the land surface model are bias-corrected by using composite runoff data from UNH-GRDC. The impact of bias-correction on the runoff, which is spatially resolved on 0.5° grid, has been evaluated for 1991~2010. It is shown that bias-correction increases runoff by 30% on average over all continents, which is closer to UNH-GRDC. Two experiments with coupled CaMa-Flood are carried out to produce river discharge: one using this bias correction and the other not using. It is found that the experiment adapting bias correction exhibits significant increase of both river discharge over major rivers around the world and continental freshwater discharge into oceans (40% globally), which is closer to GRDC. These preliminary results indicate that the application of CaMa-Flood as well as bias-corrected runoff to the operational global seasonal forecast system is feasible to attain information of surface water cycle from a coupled suite of atmospheric, land surface, and hydrodynamic model.

지면경계조건이 UM을 이용한 동아시아 여름철 단기예보에 미치는 영향 (Impacts of Land Surface Boundary Conditions on the Short-range weather Forecast of UM During Summer Season Over East-Asia)

  • 강전호;서명석
    • 대기
    • /
    • 제21권4호
    • /
    • pp.415-427
    • /
    • 2011
  • In this study, the impacts of land surface conditions, land cover (LC) map and leaf area index (LAI), on the short-range weather forecast over the East-Asian region were examined using Unified Model (UM) coupled with the MOSES 2.2 (Met-Office Surface Exchange Scheme). Four types of experiments were performed at 12-km horizontal resolution with 38 vertical layers for two months, July and August 2009 through consecutive reruns of 72-hour every 12 hours, 00 and 12 UTC. The control experiment (CTRL) uses the original IGBP (International Geosphere-Biosphere Programme) LC map and old MODIS (MODerate resolution Imaging Spectroradiometer) LAI, the new LAI experiment (NLAI) uses improved monthly MODIS LAI. The new LC experiment (NLCE) uses KLC_v2 (Kongju National Univ. land cover), and the new land surface experiment (NLSE) uses KLC_v2 and new LAI. The reduced albedo and increased roughness length over southern part of China caused by the increased broadleaf fraction resulted in increase of land surface temperature (LST), air temperature, and sensible heat flux (SHF). Whereas, the LST and SHF over south-eastern part of Russia is decreased by the decreased needleleaf fraction and increased albedo. The changed wind speed induced by the LC and LAI changes also contribute the LST distribution through the change of vertical mixing and advection. The improvement of LC and LAI data clearly reduced the systematic underestimation of air temperature over South Korea. Whereas, the impacts of LC and LAI conditions on the simulation skills of precipitation are not systematic. In general, the impacts of LC changes on the short range forecast are more significant than that of LAI changes.

인공열과 land-use가 부산시의 열적 환경에 미치는 영향 연구 (A Study on The Effect of Anthropogenic Heat Flux and Land-Use on Thermal Environment in Pusan)

  • 김유근
    • 한국대기환경학회지
    • /
    • 제16권4호
    • /
    • pp.363-372
    • /
    • 2000
  • In order to overtake a quantitative analysis of effect of anthropogenic heat and different land-use on urban thermal environment numerical simulation of surface energy budget was carried out under typical summer synoptic condition. It is beneficial to understand surface temperature of complex urban surace. The different land-use types are classified of rice field farm fruit garden residential region forest water and swamp by using map scaled 1/25000 of Pusan metropolitan. The model predicts that maximum heat island intensity in the central part of Pusan is 7$^{\circ}C$ at 2000 LST in summertime. The surface temperature is propotional to the density of constructions. The effect of anthropogenic heat generation on surface temperature is the increase of 0.3$^{\circ}C$ at 1400LST in the central part of Pusan during summertime.

  • PDF

복잡지형에서 도시화에 따른 대기오염 확산에 관한 시뮬레이션 (Random Walk Simulation of Atmospheric Dispersion on Surface Urbanization over Complex Terrain)

  • 이순환;이화운;김유근
    • 한국대기환경학회지
    • /
    • 제18권2호
    • /
    • pp.67-83
    • /
    • 2002
  • The coupled model (SMART) of dynamic meteorology model and particle dispersion model was developed. The numerical experiment on the relationship between change of land use and diffusion behavior in complex terrain was carried out using this model. It tried to investigate the change of particle diffusion behavior and local weather under the condition in which land-land breeze and sea breeze and mountain breeze intermingled. The numerical experiment results are as follows; 1) The more complicated local circulation field of the interaction of sea breeze, mountain breeze and Land -land breeze is formed. Then, the region circulation in which the urbanization is specific by location of the region is strengthened and is weakened. 2) Though in the region with dominant sea breeze, Land-land breeze does not appear directly, the progress of the sea wind to the inland is affected. 3) In the prediction of the air diffusion, emission high quality and accurate information of the emission site are important. That is to say, the dispersion predicting result which emission high quality and small error of the site perfectly vary for Land - land breeze in the effect may be brought about.

식생의 영향을 고려한 울산지역의 중규모 지역기상장에 관한 연구 (Numerical Analysis of Meso-Scale Circulation with Inclusion of a Layer of Vegetation over Ulsan Area)

  • 이성대
    • 한국수자원학회논문집
    • /
    • 제30권2호
    • /
    • pp.119-129
    • /
    • 1997
  • 울산지역의 해륙풍장을 해석하기 위해 3차원 중규모 지역기상 수치모형을 개발하여 흐름장의 변동을 수치해석하였다. 식생의 영향을 고려한 지표면 열수지모형을 이용하여 지표면의 온도 및 습도를 결정하도록 하였다. 그리고 접지층에서의 연직방향 확산계수는 Businger의 모형을, Eckman층에서는 Yamada의 난류 closure모형을 사용하여 계산하였다. 그 결과 울산지역의 해륙풍장의 거동특성을 해석하는데 있어서 본 모형은 효과적임을 알 수 있었다.

  • PDF

국립기상과학원 플럭스 관측 자료 기반의 JULES 지면 모델 모의 성능 분석 (Evaluation of JULES Land Surface Model Based on In-Situ Data of NIMS Flux Sites)

  • 김혜리;홍제우;임윤진;홍진규;신승숙;김윤재
    • 대기
    • /
    • 제29권4호
    • /
    • pp.355-365
    • /
    • 2019
  • Based on in-situ monitoring data produced by National Institute of Meteorological Sciences, we evaluated the performance of Joint UK Land Environment Simulator (JULES) on the surface energy balance for rice-paddy and cropland in Korea with the operational ancillary data used for Unified Model (UM) Local Data Assimilation and Prediction System (LDAPS) (CTL) and the high-resolution ancillary data from external sources (EXP). For these experiments, we employed the one-year (March 2015~February 2016) observations of eddy-covariance fluxes and soil moisture contents from a double-cropping rice-paddy in BoSeong and a cropland in AnDong. On the rice-paddy site the model performed better in the CTL experiment except for the sensible heat flux, and the latent heat flux was underestimated in both of experiments which can be inferred that the model represents flood-irrigated surface poorly. On the cropland site the model performance of the EXP experiment was worse than that of CTL experiment related to unrealistic surface type fractions. The pattern of the modeled soil moisture was similar to the observation but more variable in time. Our results shed a light on that 1) the improvement of land scheme for the flood-irrigated rice-paddy and 2) the construction of appropriate high-resolution ancillary data should be considered in the future research.

Sustainable Management of Irrigation Water Withdrawal in Major River Basins by Implementing the Irrigation Module of Community Land Model

  • Manas Ranjan Panda;Yeonjoo Kim
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.185-185
    • /
    • 2023
  • Agricultural water demand is considered as the major sector of water withdrawal due to irrigation. The majority part of the global agricultural field depends on various irrigation techniques. Therefore, a timely and sufficient supply of water is the most important requirement for agriculture. Irrigation is implemented in different ways in various land surface models, it can be modeled empirically based on observed irrigation rates or by calculating water supply and demand. Certain models can also calculate the irrigation demand as per the soil water deficit. In these implementations, irrigation is typically applied uniformly over the irrigated land regardless of crop types or irrigation techniques. Whereas, the latest version of Community Land Model (CLM) in the Community Terrestrial Systems Model (CTSM) uses a global distribution map of irrigation with 64 crop functional types (CFTs) to simulate the irrigation water demand. It can estimate irrigation water withdrawal from different sources and the amount or the areas irrigated with different irrigation techniques. Hence, we set up the model for the simulation period of 16 years from 2000 to 2015 to analyze the global irrigation demand at a spatial resolution of 1.9° × 2.5°. The simulated irrigation water demand is evaluated with the available observation data from FAO AQUASTAT database at the country scale. With the evaluated model, this study aims to suggest new sustainable scenarios for the ratios of irrigation water withdrawal, high depending on the withdrawal sources e.g. surface water and groundwater. With such scenarios, the CFT maps are considered as the determining factor for selecting the areas where the crop pattern can be altered for a sustainable irrigation water management depending on the available withdrawal sources. Overall, our study demonstrate that the scenarios for the future sustainable water resources management in terms of irrigation water withdrawal from the both the surface water and groundwater sources may overcome the excessive stress on exploiting the groundwater in major river basins globally.

  • PDF

장래 기후변화와 토지이용 변화에 따른 농촌소유역의 수문 영향 분석 (Climate and Land use Changes Impacts on Hydrology in a Rural Small Watershed)

  • 김학관;강문성;이은정;박승우
    • 한국농공학회논문집
    • /
    • 제53권6호
    • /
    • pp.75-84
    • /
    • 2011
  • The objective of this study is to evaluate the hydrologic impacts of climate and land use changes in a rural small watershed. HadCM3 (Hadley Centre Coupled Model, ver.3) A2 scenario and LARS-WG (Long Ashton Research Station - Weather Generator) were used to generate future climatic data. Future land use data were also generated by the CA-Markov (Cellular Automata-Markov) method. The Soil and Water Assessment Tool (SWAT) model was used to evaluate hydrologic impacts. The SWAT model was calibrated and validated with stream flow measured at the Baran watershed in Korea. The SWAT model simulation results agreed well with observed values during the calibration and validation periods. In this study, hydrologic impacts were analyzed according to three scenarios: future climate change (Scenario I), future land use change (Scenario II), and both future climate and land use changes (Scenario III). For Scenario I, the comparison results between a 30-year baseline period (1997~2004) and a future 30-year period (2011~2040) indicated that the total runoff, surface runoff, lateral subsurface runoff, groundwater discharge, and evapotranspiration increased as precipitation and temperature for the future 30-year period increased. The monthly variation analysis results showed that the monthly runoff for all months except September increased compared to the baseline period. For Scenario II, both the total and surface runoff increased as the built-up area, including the impervious surface, increased, while the groundwater discharge and evapotranspiration decreased. The monthly variation analysis results indicated that the total runoff increased in the summer season, when the precipitation was concentrated. In Scenario III, the results showed a similar trend to that of Scenario II. The monthly runoff for all months except October increased compared to the baseline period.

ARPS 모형 지면 과정 모수화에 위성 자료의 응용 (The Application of Satellite Data to Land Surface Process Parameterization in ARPS Model)

  • 하경자;서애숙;정효상
    • 한국지리정보학회지
    • /
    • 제1권1호
    • /
    • pp.99-108
    • /
    • 1998
  • 국지 기상 모형의 지표 특성을 표현하기 위해 토양 구분, 식생 구분, 지표 거칠기 길이, 지표 알베도와 엽면지수가 지면 과정 모수화 내에서 처방되어야 한다. 이 연구에서는 인공위성 관측값으로부터 계절함수로 얻어진 경,위도 1도 및 1도의 엽면지수, 지표거칠기 길이, 눈이 없을 때의 지표 알베도와 상세 격자 NDVI를 지면 과정 모형에 적용하였다. 생물권과 대기권 사이, 지면과 대기 사이의 상호작용에서 이러한 인공위성 자료를 사용한 것과 사용하지 않은 것을 비교함으로써, 열, 에너지 및 수증기 속들, 지면 기온, 바람, 식생 물함유량, 비습, 강수장의 민감도가 조사되었다.

기후변화에서 지표환경의 역할에 대한 고찰 (Review of the Role of Land Surface in Global Climate Change)

  • 김성중
    • 한국제4기학회지
    • /
    • 제23권1호
    • /
    • pp.42-53
    • /
    • 2009
  • 최근 급격한 온실가스 증가에 기인하여 대기와 해양 그리고 빙권의 변화가 나타나고 또한 기온과 수분의 함량 변화에 따라서 지표 환경도 서서히 변하기 시작하는 것으로 보고되고 있다. 지표환경의 반응은 생지화학적 반응과 생물리학적 반응으로 구분 할 수 있는데, 생지화학적 반응은 기후변화에 따른 광합성이나 이와 유사한 지표환경의 변화 그리고 이에 따른 화학적인 피드백을 지칭하며 이는 대기의 온실가스 농도를 변화 시키는 역할을 한다. 생물리학적 반응은 기후변화에 따라 식생의 분포가 변하게 되고 이에 따른 태양에너지의 입사율 변화 등과 같은 물리적 반응을 나타낸다. 과거 기후변화역사에도 식생의 변화가 기후변화에 미치는 영향이 매우 컸던 경우가 있었고, 앞으로의 기후변화는 거대하고 급격하게 일어날 것으로 예측되기 때문에, 미래 기후변화의 정확한 예측을 위해서는 지표환경변화의 물리 화학적 변화를 이해하고 예측 모형에 정확히 포함시킬 필요가 있다.

  • PDF