• Title/Summary/Keyword: land remote sensing

Search Result 1,076, Processing Time 0.029 seconds

Land Cover Classification Map of Northeast Asia Using GOCI Data

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.83-92
    • /
    • 2019
  • Land cover (LC) is an important factor in socioeconomic and environmental studies. According to various studies, a number of LC maps, including global land cover (GLC) datasets, are made using polar orbit satellite data. Due to the insufficiencies of reference datasets in Northeast Asia, several LC maps display discrepancies in that region. In this paper, we performed a feasibility assessment of LC mapping using Geostationary Ocean Color Imager (GOCI) data over Northeast Asia. To produce the LC map, the GOCI normalized difference vegetation index (NDVI) was used as an input dataset and a level-2 LC map of South Korea was used as a reference dataset to evaluate the LC map. In this paper, 7 LC types(urban, croplands, forest, grasslands, wetlands, barren, and water) were defined to reflect Northeast Asian LC. The LC map was produced via principal component analysis (PCA) with K-means clustering, and a sensitivity analysis was performed. The overall accuracy was calculated to be 77.94%. Furthermore, to assess the accuracy of the LC map not only in South Korea but also in Northeast Asia, 6 GLC datasets (IGBP, UMD, GLC2000, GlobCover2009, MCD12Q1, GlobeLand30) were used as comparison datasets. The accuracy scores for the 6 GLC datasets were calculated to be 59.41%, 56.82%, 60.97%, 51.71%, 70.24%, and 72.80%, respectively. Therefore, the first attempt to produce the LC map using geostationary satellite data is considered to be acceptable.

MONITORING OF LAND SURFACE TEMPERATURE CHANGE OF THE NORTHEAST REGION IN CHINA BY MODIS DATA

  • SHAO, Ming;Park, Jong-Geol;YASUDA, Yoshizumi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.927-929
    • /
    • 2003
  • Using received northeast region in China of Terra/MODIS data at Tokyo University of information Sciences. Make monthly division Land Surface Temperature maximum composite image. Using monthly division Land Surface Temperature maximum composite image, considered characteristic of monthly variation of Land surface temperature and relation with land covering and NDVI at the northeast region in China.

  • PDF

A Study on Surface Temperature Patterns in the Tokyo Metropolitan Area Using ASTER Data

  • Fukui, Yuko
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1457-1459
    • /
    • 2003
  • This study reports the surface temperature pattern of the Tokyo Metropolitan area using the ASTER surface temperature product. The product is an image processed by applying temperature-emissivity separation to atmospheric corrected infrared thermal radiance of the land surface, then converted to surface temperature by using Planck's function. Daytime and nighttime observation in a cold season and a warm season were used in this study. As a result, 1) contrast between urban and suburban, 2) extraction of heating area in urban, 3) measurement of cooling effect of green space were achieved.

  • PDF

Study on the Urban Heat Island(UHI) using Remote Sensing data

  • Kyung, H.M.;Kim, Y.S.;Park, K.W.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.846-848
    • /
    • 2003
  • Analysis of UHI in Busan region using Landsat TM data. Between 1987 and 1997 surface temperature increased clearly. Land usage of Busan is construed that instigate UHI changing into industry and commerce area. Also, intensity of UHI in surface temperature appeared strongly in industrial area and business area. On the contrary, residential area, mountain area, suburb area did not appear strongly.

  • PDF

Application of Multi-periodic Harmonic Model for Classification of Multi-temporal Satellite Data: MODIS and GOCI Imagery

  • Jung, Myunghee;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.573-587
    • /
    • 2019
  • A multi-temporal approach using remotely sensed time series data obtained over multiple years is a very useful method for monitoring land covers and land-cover changes. While spectral-based methods at any particular time limits the application utility due to instability of the quality of data obtained at that time, the approach based on the temporal profile can produce more accurate results since data is analyzed from a long-term perspective rather than on one point in time. In this study, a multi-temporal approach applying a multi-periodic harmonic model is proposed for classification of remotely sensed data. A harmonic model characterizes the seasonal variation of a time series by four parameters: average level, frequency, phase, and amplitude. The availability of high-quality data is very important for multi-temporal analysis.An satellite image usually have many unobserved data and bad-quality data due to the influence of observation environment and sensing system, which impede the analysis and might possibly produce inaccurate results. Harmonic analysis is also very useful for real-time data reconstruction. Multi-periodic harmonic model is applied to the reconstructed data to classify land covers and monitor land-cover change by tracking the temporal profiles. The proposed method is tested with the MODIS and GOCI NDVI time series over the Korean Peninsula for 5 years from 2012 to 2016. The results show that the multi-periodic harmonic model has a great potential for classification of land-cover types and monitoring of land-cover changes through characterizing annual temporal dynamics.

Adaptive Reconstruction of NDVI Image Time Series for Monitoring Vegetation Changes (지표면 식생 변화 감시를 위한 NDVI 영상자료 시계열 시리즈의 적응 재구축)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Irregular temporal sampling is a common feature of geophysical and biological time series in remote sensing. This study proposes an on-line system for reconstructing observation image series including bad or missing observation that result from mechanical problems or sensing environmental condition. The surface parameters associated with the land are usually dependent on the climate, and many physical processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal periodicity. An adaptive feedback system proposed in this study reconstructs a sequence of images remotely sensed from the land surface having the physical processes with seasonal periodicity. The harmonic model is used to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatial dependency of digital image processes. In this study, the Normalized Difference Vegetation Index (NDVI) image was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula, and the adaptive reconstruction of harmonic model was then applied to the NDVI time series from 1996 to 2000 for tracking changes on the ground vegetation. The results show that the adaptive approach is potentially very effective for continuously monitoring changes on near-real time.

Satellite Monitoring of Reclamation and Land Cover Change Neighboring Tidal Flats on the West Coast of North Korea: Comparative Approaches Using Artificial Intelligence and the Normalized Difference Water Index

  • Sanae Kang;Chul-Hee Lim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.409-423
    • /
    • 2023
  • North Korea is carrying out reclamation activities in tidal flat areas distributed throughout the west coast. Previousremote sensing research on North Korean tidal flats either failsto reflect recent trends or focuses on identifying and analyzing tidal flats. Thisstudy aimsto quantify the impact of recent reclamation activitiesin North Korea's coastal areas and contribute knowledge useful for determining the best remote sensing methods for coastal areas with limited accessibility, such as those in North Korea. Using Landsat-8 OLI images from 2014-2022, we analyzed land cover changesin an area on the west coast of Pyeonganbuk-do where reclamation activities are underway. Unsupervised classification using the normalized difference water index and the random forest classification technique were each used to divide the study area into classification groups, and changes in their areas over time were analyzed. The resultsshow a clear decrease in the water area and a tendency to increase cultivated area,supporting the evidence that North Korea'sreclamation isfor agricultural land expansion.Along coasts behind seawalls, the water area decreased by nearly half, and the cultivated area increased by over 2,300%, indicating significant changes and highlighting the anthropogenic nature of the cover changes due to reclamation. Both methods demonstrated high accuracy, making them suitable for detecting cover changes caused by reclamation. It is expected that further quality research will be conducted through the use of high-resolution satellite images and by combining data from multiple satellites in the future.

The impact of land use and land cover changes on land surface temperature in the Yangon Urban Area, Myanmar

  • Yee, Khin Mar;Ahn, Hoyong;Shin, Dongyoon;Choi, Chuluong
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.39-48
    • /
    • 2016
  • Yangon Mega City is densely populated and most urbanization area of Myanmar. Rapid urbanization is the main causes of Land Use and Land Cover (LULC) change and they impact on Land Surface Temperature (LST). The objectives of this study were to investigate on the LST with respect to LULC of Yangon Mega City. For this research, Landsat satellite images of 1996, 2006 and 2014 of Yangon Area were used. Supervised classification with the region of interest and calculated change detection. Ground check points used 348 points for accuracy assessment. The overall accuracy indicated 89.94 percent. The result of this paper, the vegetation area decreased from $1061.08sq\;km^2$ (24.5%) in 1996 to $483.53sq\;km^2$ (11.2%) in 2014 and built up area clearly increased from $485.33sq\;km^2$ (11.2%) in 1996 to $1435.72sq\;km^2$ (33.1%) in 2014. Although the land surface temperature was higher in built up area and bare land, lower value in cultivated land, vegetation and water area. The results of the image processing pointed out that land surface temperature increased from $23^{\circ}C$, $26^{\circ}C$ and $27^{\circ}C$ to $36^{\circ}C$, $42^{\circ}C$ and $43.3^{\circ}C$ for three periods. The findings of this paper revealed a notable changes of land use and land cover and land surface temperature for the future heat management of sustainable urban planning for Yangon Mega city. The relationship of regression experienced between LULC and LST can be found gradually stronger from 0.8323 in 1996, 0.8929 in 2006 and 0.9424 in 2014 respectively.

Land Surface Temperature Measurements Using C-Band Radiometer (C-대역 라디오미터를 이용한 지표면 온도 측정)

  • Jang, Tae-Gyeong;Kim, Young-Gon;Woo, Dong-Sik;Son, Hong-Min;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.1013-1022
    • /
    • 2010
  • In this paper, we propose a C-band radiometer for remote sensing of land surface temperature and present its experiment results using asphalt as target. Total power type is selected for high sensitivity and low power consumption, super-heterodyne type is selected for stable high gain. A radiometer designed at 5.1 GHz to have operating bandwidth of 110 MHz has system gain of 59 dB, noise figure of 2.7 dB and receiving sensitivity of 0.45 K. We have measured surface temperature on asphalt by using implemented system and thermometer. Analysis data of each measurement results show that a radiometer operates linearly with output voltage variation rate of 6 $mV/^{\circ}C$. As a result, we verified validity of a developed C-band radiometer for remote sensing of land surface temperature.

Automated Water Surface Extraction in Satellite Images Using a Comprehensive Water Database Collection and Water Index Analysis

  • Anisa Nur Utami;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.425-440
    • /
    • 2023
  • Monitoring water surface has become one of the most prominent areas of research in addressing environmental challenges.Accurate and automated detection of watersurface in remote sensing imagesis crucial for disaster prevention, urban planning, and water resource management, particularly for a country where water plays a vital role in human life. However, achieving precise detection poses challenges. Previous studies have explored different approaches,such as analyzing water indexes, like normalized difference water index (NDWI) derived from satellite imagery's visible or infrared bands and using k-means clustering analysis to identify land cover patterns and segment regions based on similar attributes. Nonetheless, challenges persist, notably distinguishing between waterspectralsignatures and cloud shadow or terrain shadow. In thisstudy, our objective is to enhance the precision of water surface detection by constructing a comprehensive water database (DB) using existing digital and land cover maps. This database serves as an initial assumption for automated water index analysis. We utilized 1:5,000 and 1:25,000 digital maps of Korea to extract water surface, specifically rivers, lakes, and reservoirs. Additionally, the 1:50,000 and 1:5,000 land cover maps of Korea aided in the extraction process. Our research demonstrates the effectiveness of utilizing a water DB product as our first approach for efficient water surface extraction from satellite images, complemented by our second and third approachesinvolving NDWI analysis and k-means analysis. The image segmentation and binary mask methods were employed for image analysis during the water extraction process. To evaluate the accuracy of our approach, we conducted two assessments using reference and ground truth data that we made during this research. Visual interpretation involved comparing our results with the global surface water (GSW) mask 60 m resolution, revealing significant improvements in quality and resolution. Additionally, accuracy assessment measures, including an overall accuracy of 90% and kappa values exceeding 0.8, further support the efficacy of our methodology. In conclusion, thisstudy'sresults demonstrate enhanced extraction quality and resolution. Through comprehensive assessment, our approach proves effective in achieving high accuracy in delineating watersurfaces from satellite images.