• Title/Summary/Keyword: land deformation

Search Result 107, Processing Time 0.024 seconds

An Experimental Study of Sediment Transport Patterns behind Offshore Structure (외해 구조물 배후의 표사이동에 관한 실험적 연구)

  • Shin Seung-Ho;Hong Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.207-215
    • /
    • 2004
  • Recently, securing a vast land in the land region becomes more difficult and efforts to seek its alternation in the sea area have been increased. As a consequence, the coastal region has been faced to extensive beach erosion problems. In planning offshore structures such as artificial islands, it is necessary to forecast the influence of the structure construction exerting on the beach erosion of the adjacent coast. In the present study, the sediment movement pattern behind offshore structure was examined through a series of three dimensional movable bed experiments, so as to develop the numerical model which forecasts morphological change including beach erosions. The experimental results reveal that the sediment movement patterns of the beach line side and the depth region are separated at a certain boundary line. In details, at the beach side including swash zone the sediment movement becomes dominant, which is governed by a relation between depth contours and incident wave directions, while at the depth region the bed load and suspended load due to the orbit motion of waves are carried by nearshore currents, and both movements are clearly separated at a specified boundary that is related to partial standing wave from the beach. It is expected that these results can be effectively used for verification of a numerical model on morphological change of the coast.

  • PDF

Stability Analysis of the Excavation Slope on Soft Ground using Sheet Pile (널말뚝을 이용한 연약지반 굴착사면의 안정해석)

  • Kang, Yea Mook;Cho, Seong Seop;Lee, Dal Won
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 1996
  • The following results were obtained by analyzing the displacement, strain and stability of ground at the soft ground excavation using sheet pile. 1. Before setting the strut, the horizontal displacement was large on the upper part of excavated side, but after setting the strut, it showed concentrated phenomenon while being moved to go down to the excavated side. 2. After setting the strut, the displacement of sheet pile was rapidly decreased about a half compared with before setting the strut. The limitation of excavation depth was shown approximately GL-8m after setting double stair strut. 3. Maximum shear strain was gradually increased with depth of excavation, and local failure possibility due to shear deformation at the bottom of excavation was decreased by reinforcement of strut. 4. Maximum horizontal displacement of sheet pile at GL-7.5m was shown 0.2% of excavation depth in elasto-plastic method, and 0.6% in finite-element methods, and the maximum displacement was occurred around the bottom of excavation. 5. To secure the safety factor about penetration depth in the ground of modeling, D/H should be more than 0.89 in the case of one stair strut, and more than 0.77 in the case of double stair strut. 6. The relation of safety factor and D/H about the penetration depth was appeared, Fs=0.736(D/H) + 0.54 in the case of one stair strut, and Fs=0.750(D/H) + 0.62 in the case of double stair strut.

  • PDF

Permeability Characteristics of Soft Clay using the Piezocone Test and a Laboratory Test (피에조 콘 시험과 실내시험을 이용한 점토지반의 투수특성 연구)

  • Gu, Nam-Sil;Kim, Young-Min;Park, Jae-Hwhan;Jang, Ji-Guen
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.349-359
    • /
    • 2011
  • The consolidation behavior of soft clay is controlled mainly by its compressibility and deformation characteristics. Soil permeability depends on various soil characteristics, including the soil type and anisotropy. The coefficient of permeability of soft clay is determined by using a laboratory test (the Oedometer test) or a piezocone test. The latter test is useful for estimating the permeability characteristics from $c_h$ and $k_h$ by performing an excess pore-pressure dissipation test. This study seeks to validate an existing theoretical formula in applying it to marine clay, and to assess the relation between $k_h/k_c$ and the mechanical properties of soft clay. Piezocone tests and laboratory tests were performed using sediment from the Yellow Sea and from the South Sea near Korea. We compared $k_h/k_v$ values obtained using the piezocone test and using laboratory consolidation tests. The obtained values are similar to the values obtained by Jamiolkowski et al. (M application); therefore, the latter values are recommended to be used as $k_h/k_v$.

Behavior Characteristics of Composite Reinforced Earth with Improved Soil Surface and Geogrid-reinforced Backfill (지반개량재 전면토체와 지오그리드 보강 배면토체로 형성된 복합보강토의 거동특성)

  • Bhang, In-Hwang;Kim, Tae-Heon;Kim, You-Seong;Kim, Jae-Hong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.27-34
    • /
    • 2016
  • Many steepened slopes have become increasingly advantageous because of the desire to increase land usage and decrease site development costs. The proven concept of tensile reinforcement allows construction of slopes with far steeper face angles than the soils natural angle. Steepened slope face reinforced with improved soil can increase land usage substantially while providing a natural appearance. The paper presents composite reinforced earth with improved soil surface and geogrid-reinforced backfill. For the stability of the steepened slope, the behavior of the composite reinforced earth are validated and verified by case study and numerical analysis. The case study has performed to investigate the deformation of reinforce soil slope for 14 months. Its horizontal behavior by general vertical load shows within the safe range (0.5% of structure height). As a result of numerical analysis and case study, the reinforcement effect of the steepened slope technique using improved soil is sufficient to be constructed as reinforced soil slope.

Neotectonic Crustal Deformation and Current Stress Field in the Korean Peninsula and Their Tectonic Implications: A Review (한반도 신기 지각변형과 현생 응력장 그리고 지구조적 의미: 논평)

  • Kim, Min-Cheol;Jung, Soohwan;Yoon, Sangwon;Jeong, Rae-Yoon;Song, Cheol Woo;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.169-193
    • /
    • 2016
  • In order to characterize the Neotectonic crustal deformation and current stress field in and around the Korean Peninsula and to interpret their tectonic implications, this paper synthetically analyzes the previous Quaternary fault and focal mechanism solution data and recent geotechnical in-situ stress data and examines the characteristics of crustal deformations and tectonic settings in and around East Asia after the Miocene. Most of the Quaternary fault outcrops in SE Korea occur along major inherited fault zones and show a NS-striking top-to-the-west thrust geometry, indicating that the faults were produced by local reactivation of appropriately oriented preexisting weaknesses under EW-trending pure compressional stress field. The focal mechanism solutions in and around the Korean Peninsula disclose that strike-slip faulting containing some reverse-slip component and reverse-slip faulting are significantly dominant on land and in sea area, respectively. The P-axes are horizontally clustered in ENE-WSW direction, whereas the T-axes are girdle-distributed in NNW direction. The geotechnical in-situ stress data in South Korea also indicate the ENE-trending maximum horizontal stress. The current crustal deformation in the Korean Peninsula is thus characterized by crustal contraction under regional ENE-WSW or E-W compression stress field. Based on the regional stress trajectories in and around East Asia, the current stress regime is interpreted to have resulted from the cooperation of westward shallow subduction of the Pacific Plate and collision of Indian and Eurasian continents, whereas the Philippine Sea plate have not a decisive effect on the stress-regime in the Korean Peninsula due to its high-angle subduction that resulted in dominant crust extension of the back-arc region. It is also interpreted that the Neotectonic crustal deformation and present-day tectonic setting of East Asia commenced with the change of the Pacific Plate motion during 5~3.2 Ma.

Detection of Surface Changes by the 6th North Korea Nuclear Test Using High-resolution Satellite Imagery (고해상도 위성영상을 활용한 북한 6차 핵실험 이후 지표변화 관측)

  • Lee, Won-Jin;Sun, Jongsun;Jung, Hyung-Sup;Park, Sun-Cheon;Lee, Duk Kee;Oh, Kwan-Young
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1479-1488
    • /
    • 2018
  • On September 3rd 2017, strong artificial seismic signals from North Korea were detected in KMA (Korea Meteorological Administration) seismic network. The location of the epicenter was estimated to be Punggye-ri nuclear test site and it was the most powerful to date. The event was not studied well due to accessibility and geodetic measurements. Therefore, we used remote sensing data to analyze surface changes around Mt. Mantap area. First of all, we tried to detect surface deformation using InSAR method with Advanced Land Observation Satellite-2 (ALOS-2). Even though ALOS-2 data used L-band long wavelength, it was not working well for this particular case because of decorrelation on interferogram. The main reason would be large deformation near the Mt. Mantap area. To overcome this limitation of decorrelation, we applied offset tracking method to measure deformation. However, this method is affected by window kernel size. So we applied various window sizes from 32 to 224 in 16 steps. We could retrieve 2D surface deformation of about 3 m in maximum in the west side of Mt. Mantap. Second, we used Pleiadas-A/B high resolution satellite optical images which were acquired before and after the 6th nuclear test. We detected widespread surface damage around the top of Mt. Mantap such as landslide and suspected collapse area. This phenomenon may be caused by a very strong underground nuclear explosion test. High-resolution satellite images could be used to analyze non-accessible area.

Assessment of minimum pillar width and reinforcement of parallel tunnel using numerical analysis and field monitoring (수치해석과 현장계측을 통한 병렬터널의 최소 필라폭과 보강에 대한 평가)

  • An, Yong-Koan;Kong, Suk-Min;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.3
    • /
    • pp.299-310
    • /
    • 2014
  • Nationally, tunnel and underground constructions are necessary for the environmental sustainability and the efficient use of land space. For the importance of eco-friendly circumstances, 2-arch or large road tunnel has been designed so far. However, such a 2-arch or large tunnel has problems in terms of cost, constructability, construction period, and maintenance. Therefore, in this study, tunnel behavior and stability of rock pillar according to the pillar width and cover depth for parallel tunnels are investigated by performing FE analysis and using empirical formula. According to the results, Rock pillar is reinforced for distributed vertical load by Tie-Bolt due to unpredicted ground deformation, and the reinforced rock pillar's behaviour from the FE analysis shows a quite good agreement with field measurement. According to ground conditions, if the pillar width of the parallel tunnels is reduced, it can be more efficient in use of the tunnel space compared to previous tunnels.

Long-term Variation of Tidal-flat Sediments in Gomso Bay, West Coast of Korea (곰소만 조간대 퇴적물의 장기적 변화)

  • Chang, Jin-Ho;Ryu, Sang-Ock;Jo, Yeong-Jo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.357-366
    • /
    • 2007
  • In Gomso Bay, on the west coast of Korea, the surface sediments sampled in 1991 and 2006 were analysed to identify the long-term variations of tidal flat sediments. Silt and clay contents have decreased in the bay-mouth tidal flats whereas sand and clay contents have decreased on the inner-bay and bay-head tidal flats over the last 15 year period. In particular, the clay contents of the tidal flats in 2006 were relatively low when compared to those of both tidal flats adjacent to other semi-enclosed bays and those of the tidal flats in 1991. The variations of textural compositions in the tidal flat sediments have led to changes of the sedimentary facies. It indicates that the changes must have been made by the changes of hydrodynamic conditions impacted by human activities, such as the construction of sea-walls, land reclamation, structures of farms constructed compactly near the low water line, and the Saemangeum dyke constructed in the northern part of the area where this research was conducted.

Influences of Process Conditions on the Surface Expansion and Contact Pressure in Backward Can Extrusion of Al Alloys (알루미늄 합금을 이용한 후방압출에 의한 캔 성형시 성형 조건이 표면확장과 접촉 압력에 미치는 영향)

  • Min, K.H.;Seo, J.M.;Koo, H.S.;Vishara, R.J.;Tak, S.H.;Lee, I.C.;Hwang, B.B.
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.521-529
    • /
    • 2007
  • This paper is concerned with the analysis on the surface expansion of AA 2024 and AA 1100 aluminum alloys in backward extrusion process. Due to heavy surface expansion appeared usually in the backward can extrusion process, the tribological conditions along the interface between the material and the punch land are very severe. In the present study, the surface expansion is analyzed especially under various process conditions. The main goal of this study is to investigate the influence of degree of reduction in height, geometries of punch nose, friction and hardening characteristics of different aluminum alloys on the material flow and thus on the surface expansion on the working material. Two different materials are selected for investigation as model materials and they are AA 2024 and AA 1100 aluminum alloys. The geometrical parameters employed in analysis include punch corner radius and punch nose angle. The geometry of punch follows basically the recommendation of ICFG and some variations of punch geometry are adopted to obtain quantitative information on the effect of geometrical parameters on material flow. Extensive simulation has been conducted by applying the rigid-plastic finite element method to the backward can extrusion process under different geometrical, material, and interface conditions. The simulation results are summarized in terms of surface expansion at different reduction in height, deformation patterns including pressure distributions along the interface between workpiece and punch, comparison of surface expansion between two model materials, geometrical and interfacial parametric effects on surface expansion, and load-stroke relationships.

Comparative Accuracy of Terrestrial LiDAR and Unmanned Aerial Vehicles for 3D Modeling of Cultural Properties (문화재 3차원 모델링을 위한 지상 LiDAR와 UAV 정확도 비교 연구)

  • Lee, Ho-Jin;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.179-190
    • /
    • 2017
  • A terrestrial LiDAR survey was conducted and unmanned aerial vehicle(UAV) images were taken for target cultural properties to present the utilization measures of terrestrial LiDAR and UAV in three-dimensional modeling of cultural properties for the identification of the status and restoration of cultural properties. Then the accuracy of the point clouds generated through this process was compared, an overlap analysis of the 3D model was conducted, and a convergence model was created. According to the results, the modeling with terrestrial LiDAR is more appropriate for precise survey because 3D modeling for the detection of displacement and deformation of cultural properties requires an accuracy of mm units. And UAV model has limitation as the impossibility of detailed expression of parts with sharp unevenness such as cracks of bricks. However, it is found that the UAV model has a wide range of modeling and has the advantage of modeling of real cultural properties. Finally, the convergence model created in this study using the advantages of the terrestrial LiDAR model and the UAV model could be efficiently utilized for the basic data development of cultural properties.