• Title/Summary/Keyword: lamination

Search Result 519, Processing Time 0.028 seconds

Thermal analysis of the Lamination Head for Die Bonding (다이 본딩 lamination head 열해석)

  • Hwang, Soon-Ho;Lee, Young-Lim
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.981-984
    • /
    • 2010
  • 생산성 증가 및 비용 절감을 위해 반도체 공정 기술을 단순화 시키는 것이 필요하다. WBL(Wafer Backside Lamination) 기술을 이용해 필름(film) 형태로 얇은 다이접착제를 웨이퍼(wafer)에 접착하여 반도체 칩과 PCB를 붙이는 방법과 직접 PCB에 다이접착제를 붙이는 방법을 사용하면 획기적으로 공정을 단순화 시킬 수 있다. 하지만 Lamination 기법은 고온을 이용하여 모듈화된 PCB에 접착하므로 전도와 복사에 의해 주변 접착제 필름이 녹아 버리는 문제점이 발생한다. 본 연구에서는 고온으로 인한 필름 융해 현상을 방지하기 위하여 배크라이트를 설치하였으며 CFD 해석을 통해 PCB와 반도체 칩을 접착시킬 때 열이 PCB에 미치는 영향을 살펴보았다.

  • PDF

Formaldehyde Emission of Wood-Based Composite Panels with Different Surface Lamination Materials Using Desiccator Method

  • Park, Byung-Dae;Kang, Eun Chang;Lee, Sang-Min;Park, Jong Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.600-606
    • /
    • 2016
  • Wood-based composite panels such as plywood, particleboard (PB), or medium density fiberboard (MDF) are mostly used in the lamination on their surface for the manufacturing of furniture, or interior building products, the concern on the formaldehyde emission (FE) from the surface laminated wood panels is increasingly attracting attentions from the public. Thus, this study was conducted to understand influence of surface laminating materials to the FE from PB and MDF with or without edge sealing, using 24-hour desiccator method. Both PB samples that had been laminated on their surface with low-pressure laminate (LPL) or polypropylene (PP) film and MDF that had been treated with poly(vinyl chloride) (PVC) or coating were tested for the FE with or without edge sealing. As expected, the FE of PB with the sealed edges decreased to 37.4% and 80.7% with the LPL and PP lamination, respectively. The surface laminated MDF with the sealed edges also showed a decrease in the emission up to 57.8% and 54.3%, with the PVC lamination and coating, respectively. However, the coated MDF samples showed 5.3% increase in the emission when their edges were not sealed, indicating a FE form the solvent used for coating. These results showed that the type of surface lamination materials on wood-based composite panels has a great impact on their resultant FE, indicating that the influence of surface laminating materials should be taken into consideration for the formaldehyde mission measurement.

Feasibility of Manufacturing Desk and Chair with Curved Veneer Lamination (단판 적층성형 학생용 책상.의자의 제조적성)

  • Suh, Jin-Suk;Park, Jong-Young;Han, Ki-Man
    • Journal of the Korea Furniture Society
    • /
    • v.16 no.2 s.30
    • /
    • pp.59-65
    • /
    • 2005
  • As physical condition of students improves, there is a need to develop human body-friendly desk and chair for students. In this study, desks and chairs were manufactured with curved veneer lamination under high frequency heating and pressing, using ten wood species such as Japanese red pine, Korean pine, pitch pine, Japanese larch, yellow poplar, black locust, oak, radiata pine, beech, and birch. The performance of these products were evaluated. The results obtained were summarized as follows; With high frequency heating, the turned lamination of veneers with full size sheet ($3{\times}6\;feet$) prepared by rotary lathe peeling was successfully applied for making the members of desk top, leg frames of desk and chair. Bending strengths of desk tops were relatively greater for yellow poplar, black locust and red pine, which were similar to those of beech and birch. Bending strengths of desk legs were classified into greater species group (red pine, yellow poplar, larch) and lower species group (radiata pine, Korean pine, pitch pine). Compressive strengths of chair legs in parallel direction to the lamination were greater in black locust and larch. On the other hand, differences between outer and inner gap at the top and drawer bottom of desk top were rather larger for the laminations of birch and beech, and less for those of yellow poplar and pitch pine, showing greater stability of open drawer space. In results, yellow poplar, larch, pitch pine and red pine showed good appearance and strength properties at the curved veneer lamination. Accordingly, it was believed that these domestic woods were able to substitute for birch which was being imported for the use of veneer-laminates type furniture.

  • PDF

Finite Element Analysis on Buckling Pressure by the Lamination of Composite Pressure Bull (복합재 내압선체의 적층에 따른 좌굴하중 변화에 관한 유한요소 해석)

  • Son J. Y.;Cho J. R.;Bae W. B.;Kwon J. H.;Choi J. H.;Cho Y. S.;Kim T. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.458-462
    • /
    • 2005
  • This paper deal with the optimal lamination condition of cylindrical shell applied new composite URN300 for a study of composite empirical formula. Finite element analyses for isotropic materials considered element numbers and boundary conditions are compared with existing empirical formulas to apply FE analysis for composite. And composite tensile test is done to know the composite material applied FE analysis for composite. The results of FE analyses for isotropic materials have indicated that Optimal element number and boundary condition were 1600 and both simple support. These conditions were applied in composite FE analyses. Ply orientations and lamination patterns in FE analyses for composite were considered. Ply orientations are $0^{\circ},\;15^{\circ},\;30^{\circ},\;45^{\circ},\;60^{\circ},\;75^{\circ},\;and\;90^{\circ}$. Lamination patterns are $[\pm\theta/0/90]_{14s]$ and $[\pm\theta_{14}/0_{14}/90_{14}]_s$ in FE analysis. Lamination pattern $[\pm\theta_{14}/0_{14}/90_{14}]_s$ is the equivalent model of $[\pm\theta/0/90]_{14s}$. At the result of this study, the FE analyses for composite have indicated that the optimized ply orientation $75^{\circ}$ is and real model must use in FE analysis for accurate results.

  • PDF

PERSISTENT LAMINATION

  • OH, SEUNGSANG
    • Honam Mathematical Journal
    • /
    • v.23 no.1
    • /
    • pp.67-70
    • /
    • 2001
  • Brittenham has shown how an incompressible Seifert surface F for a knot in $S^3$ can be used to find an infinite class of persistently laminar knots. We generalize this to create larger class of persistently laminar knots which therefore have property P.

  • PDF

Collaborative optimization for ring-stiffened composite pressure hull of underwater vehicle based on lamination parameters

  • Li, Bin;Pang, Yong-jie;Cheng, Yan-xue;Zhu, Xiao-meng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.373-381
    • /
    • 2017
  • A Collaborative Optimization (CO) methodology for ring-stiffened composite material pressure hull of underwater vehicle is proposed. Structural stability and material strength are both examined. Lamination parameters of laminated plates are introduced to improve the optimization efficiency. Approximation models are established based on the Ellipsoidal Basis Function (EBF) neural network to replace the finite element analysis in layout optimizers. On the basis of a two-level optimization, the simultaneous structure material collaborative optimization for the pressure vessel is implemented. The optimal configuration of metal liner and frames and composite material is obtained with the comprehensive consideration of structure and material performances. The weight of the composite pressure hull decreases by 30.3% after optimization and the validation is carried out. Collaborative optimization based on the lamination parameters can optimize the composite pressure hull effectively, as well as provide a solution for low efficiency and non-convergence of direct optimization with design variables.

Curvilinear free-edge form effect on stability of perforated laminated composite plates

  • Zerin, Zihni;Basoglu, Muhammed Fatih;Turan, Ferruh
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.255-266
    • /
    • 2017
  • In this study, self-supporting roofing elements especially convenient for large-span structures such as stadium, airport terminal, mall, coliseum, etc. were examined with respect to critical buckling load. These elements were assumed as laminated composite plates and, variation of free-edge forms, cutout types and lamination configurations were used as design parameters. Based on the architectural feature and structural requirements, the effects of curvilinear free-edge form on critical buckling load were focused on in this research. Within this scope, 14 types of lamination configuration were specified according to various orientation angle, number and thickness of plies with a constant value of total plate thickness. Besides that, 6 different types of cutout and 3 different free-edge forms were determined. By combining all these parameters 294 different critical buckling load analyses were performed by using ANSYS Mechanical software based on finite element method. Effects of those parameters on critical buckling load were evaluated referring to the obtained results. According to the results presented here, it may be concluded that lamination conditions have more significant influence on the critical buckling load values than the other parameters. On the other hand, it is perceived that curvilinear free-edge forms explicitly undergo changings depending on lamination conditions. For future work, existence of delamination might be considered and progression of the defect could be investigated by using non-linear analysis.

Static Chaos Microfluid Mixers Using Alternating Whirls and Laminations (미소블록에 의한 교차 회전유동과 미소유로에 의한 박층유동을 이용한 정적 혼돈 미소유체 혼합기에 관한 연구)

  • Chang, Sung-Hwan;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1549-1556
    • /
    • 2004
  • We have deigned, fabricated and compared four different types of static chaos microfluid mixers, including the mixers using straight channel flow, microblock-induced alternating whirl flow, microchannel-induced lamination flow, and combined alternating whirl-lamination flow. Among them, the alternating whirl-lamination (AWL-type) mixer, composed of 3-D rotationally arranged microblocks and dividing microchannels fabricated by conventional planar lithography process, is effective to reduce the mixing length over wide flow rate ranges. We characterize the performance of the fabricated mixers, through the flow visualization technique using phenolphthalein solution. We verify that the AWL-type microfluid mixer shows the shortest fluid mixing length of 2.8mm∼5.8mm for the flow rate range of Re=0.26∼26 with the pressure drop lower than 5kPa. Compared to the previous mixers, requiring the mixing lengths of 7∼17mm, the AWL-type microfluid mixer results in the 60% reduction of the mixing lengths. Due to the reduced mixing lengths within reasonable pressure drop ranges, the present micromixers have potentials for use in the miniaturized Micro-Total-Analysis-Systems($\mu$TAS).