• Title/Summary/Keyword: laminated wood

Search Result 163, Processing Time 0.025 seconds

The Effect of Finger Length on Bending Strength Properties in Laminated Wood (집성재의 정거길이가 휨강도성능에 미치는 영향)

  • 홍병화;변희섭;김종만
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.2
    • /
    • pp.7-12
    • /
    • 2000
  • This paper describes the bending strength properties of laminated woods which had three kinds of specimens according to finger length-12, 4.5 mm and butt joint and the acoustic emissions (AEs) generated during the test. 3-ply laminated wood beams were tension side layers (lower layers) composed of one middle lamina and two side-jointed laminae, with one butt joint ($_1BJ$), one finger joint (12mm, $_1FJ_{12}$) or one finger joint (4.5mm, $_1FJ_{4.5}$) in the middle lamina of tension side layer. And 3-ply laminated wood beams were tension side layers (lower layers) also composed of one lamina, with one butt joint (BJ), one finger joint (12mm, $FJ_{12}$) or one finger joint (4.5mm, $FJ_{4.5}$/) in tension side layer. Cryptomelia pieces were cut for butt and two finger types and glued with resorcinol-phenol resin adhesive. The results were as follows It was not effective in the bending modulus of elasicity (MOE) with IFJL type and had no difference from finger length. The bending modulus of rupture (MOR) of laminated wood beams including finger joint was the same values as that including butt feint and had no difference from finger length. It was effective in MOE with FJL type and had no difference from finger length. The effect of finger joint on MOR was much higher than that of butt joint but had no difference from finger length. The AE generation time of IFJL type was earlier than that of the control wood and the number of AE count was much more than that of the control wood. However, the AE generation time of FJL type was earlier than that of the control wood and the number of U count was much fewer than that of the control wood.

  • PDF

Physical Properties of Fabric E-Glass Fiber Reinforced Laminated Timber (II) - Peeling and vapor adsorption properties - (직물유리섬유강화 집성재의 물리적 특성(제2보) - 박리 및 흡습성 -)

  • Jung, In-Suk;Lee, Weon-Hee;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.35-42
    • /
    • 2003
  • This study was conducted to estimate peeling and vapor adsorption properties made with fabric glass fiber reinforced laminated timber according to our earlier report(Jung et al., 2002). In adsorption peeling test, three all types solid wood were not appeared the peeling. However, solid wood appeared to the peeling in boiling peeling test except for control wood. Vapor adsorption test was performed at 40℃, 90% relative humidity for 48 hours. Cross sections were not different all solid wood. Radial section and tangential section with glass fiber were delayed vapor adsorption compared to control wood. In anisotropy of vapor adsorption, solid wood with glass fiber were small values.

Bending Creep Properties of Cross-Laminated Wood Panels Made with Tropical Hardwood and Domestic Temperate Wood

  • PARK, Han-Min;GONG, Do-Min;SHIN, Moon-Gi;BYEON, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.608-617
    • /
    • 2020
  • For efficient use and expansion of domestic small- and medium-diameter woods, cross-laminated wood panels composed of tropical hardwoods and domestic temperate woods were fabricated, and the bending creep behavior under long-term loading was investigated. The bending creep curve of the cross-laminated wood panels showed an exponential function graph with a sharp increase at the top right side. The wood panel composed of a teak top layer and larch core and bottom layers recorded the highest initial deformation, and that composed of a merbau top layer and tulip core and bottom layers showed the lowest initial deformation. Creep deformation of the cross-laminated wood panels showed the highest value in that composed of a teak top layer and larch core and bottom layers and showed the lowest value in that composed of a merbau top layer and tulip core and bottom layers. The obtained creep deformation is 3.1-4.3 times that of merbau, however, it is remarkably lower than that of tulip and larch. The highest relative creep was recorded by the wood panel composed of merbau top layer and larch core and bottom layers, whereas that composed of the teak top layer and tulip core and bottom layers showed the lowest relative creep.

Physical-Mechanical Properties of Laminated Board Made from Oil Palm Trunk (Elaeis guineensis Jacq.) Waste with Various Lamina Compositions and Densifications

  • PRABUNINGRUM, Dita Sari;MASSIJAYA, Muh Yusram;HADI, Yusuf Sudo;ABDILLAH, Imam Busyra
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.196-205
    • /
    • 2020
  • The purpose of this study was to investigate a method for improving the physical and mechanical properties of laminated board made from oil palm trunk (OPT). The effects of pretreating the lamina with heat-pressure and altering the lamina composition of the laminated board were investigated. The outer third of OPT in cross-section had high-density wood, while the underlying third had low to medium density. The hot press was applied to pretreat the lamina that had low to medium density. The lamina were 1.5 cm in thickness, 5 cm in width, and 65 cm in length. The hot press was applied at 2.94 MPa or 4.41 MPa at 150 ℃ for 60 minutes, and the target thickness of the lamina was 1 cm. The three layers of the laminated board samples were bonded with isocyanate adhesive at a glue spread of 300 g/㎡ and cold pressed at 0.98 MPa for 3 h. The laminated board samples were tested according to Japanese Agricultural Standard (JAS) 234-2003. The results showed that the densification of the inner lamina did not significantly affect the physical-mechanical properties of the laminated board produced. However, the laminated board made with high-density laminas for the outer layers fulfilled the JAS 234-2003 standard for the modulus of elasticity and the modulus of rupture.

Bending Creep Performances of Hybrid Laminated Woods Composed of Wood-Wood Based Boards (목재와 목질보드 복합적층재의 휨 크리프 성능)

  • Park, Han-Min;Kang, Dong-Hyun;Choi, Yoon-Eun;Ahn, Sang-Yeol;Ryu, Hyun-Su;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, to study an effective use and improve strength performances of woods and wood-based materials, three-ply hybrid laminated woods which are composed of spruce in the face and three kinds of wood-based boards (MDF, PB, OSB) in the core were manufactured, and the effect of constitution elements used for the core laminae on bending creep performances was investigated. The shape of creep curves showed exponential function plots which the upper right side was increased, and differed among the kinds of wood-based boards used for the core laminae of hybrid laminated wood. The creep deformation perpendicular to the grain of faces of hybrid laminated woods was in order $C_{\perp}$(P) > $C_{\perp}$(M) > $C_{\perp}$(O) with PB, MDF and OSB in the core, respectively. It was found that the creep deformation arranged with OSB in the core had 2 times smaller than those arranged with MDF and PB in the core. By hybrid laminating, the creep deformation of spruce perpendicular to the grain was markedly decreased. On the other hand, the creep deformation parallel to the grain of the faces ($C_{\parallel}$ type) of hybrid laminated woods was in order $C_{\parallel}$(P) > $C_{\parallel}$(O) > $C_{\parallel}$(M) with PB, OSB and MDF in the core. The ratios among three hybrid laminated woods were considerably decreased, especially the difference between $C_{\parallel}$(P) and $C_{\parallel}$(O) hybrid laminated woods arranged with PB and OSB in the core was very small. These values showed 0.108~0.464 times smaller than creep deformation of three wood-based boards and it was found that creep deformation of three wood-based boards was considerably decreased by hybrid laminating. Creep anisotropy of hybrid laminated woods was greater in creep deformation than in initial deformation, whereas it was found that the values was much smaller than that of spruce parallel laminated woods.

Monitoring of Moisture and Dimensional Behaviors of Nail-Laminated Timber (NLT)-Concrete Slab Exposed to Outdoor Air

  • HWANG, Sung-Wook;CHUNG, Hyunwoo;LEE, Taekyeong;AHN, Kyung-Sun;PANG, Sung-Jun;BANG, Junsik;Won, Hyo;OH, Jung-Kwon;YEO, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.301-314
    • /
    • 2022
  • The moisture and dimensional behaviors of a nail-laminated timber (NLT)-concrete slab composed of an NLT-plywood composite and topping concrete are monitored for 385 days. The slab is developed for using as flexural elements such as floors. The humidity control of wood gently introduces significant fluctuations under the ambient relative humidity into the slab, and fluctuations in the relative humidity result in dimensional changes. The equilibrium moisture content of the slab increases from 6.7% to 15.3% during the monitoring period, resulting in a width (radial) strain of 0.58%. The length (longitudinal) strain is negligible, and the height (tangential) strain is excluded from the analysis because of abstruse signal patterns generated. Concrete pouring causes a permanent increase in the width of the NLT-plywood composite. However, the width deforms because the weight of the concrete mixture loosens the nail-laminated structure, not because of the significant amount of moisture in the mixture. The dimensional stabilization effect of the nail-laminated system is demonstrated as the composite strain is lower than the total strain of lumber and plywood, which are elements constituting the nail-laminated structure.

Effects of Adhesion Conditions on Bonding Strength of Pitch Pine Woods for Glued-Laminated Wood (리기다소나무 판재(板材)의 접착조건(接着條件)이 집성재(集成材)의 접착성능(接着性能)에 미치는 영향(影響))

  • Park, Sang-Bum;Kong, Young-To;Jo, Jae-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.48-53
    • /
    • 1988
  • This study was carried out to investigate the effects of pressing time and spreading amount, moisture content, gap-distance with butt to butt joint and adhesives on bonding strength in manufacturing the laminated wood with Pitch pine (Pinus rigida). The results obtained were as follows: 1) The pressing time of 12 hours, 10 kilogram per square centimeter of pressure and 200 gram per square meter of spreading amount were required to reach over 50 kilogram per square centimeter (block shear strength) in manufacturing the laminated wood by aqueous vinyl urethane adhesive. 2) The bonding strength decreased with the increase of moisture content of wood. The block shear strength, however, showed over 100 kilogram per square centimeter when the strength test was carried out after air-drying the laminated wood in high moisture content (30-70%). 3) Regardless of direction of load, every flexural property decreased with the increase of gap-distance with butt to butt joint. However, little of every flexural property was changed at 0.5 millimeter of joint-gap distance. The flexural property of vertically laminated wood (perpendicular to glue line to load direction: 1) showed more than that of horizontally laminated wood (parallel to glue line to load direction: //). 4) Among five adhesives used at this experiment, the bonding strength of aqueous vinyl urethane adhesive was the highest in dry bond and wet tests.

  • PDF

Effect of Neonicochid Type Wood Preservative on Adhesive Properties of Resorcinol Resin for Lminated Wood (네오니코치드계 목재보존제가 집성재 제조용 레조르시놀 수지의 접착력에 미치는 영향)

  • Lee, Dong Heub;Lee, Jong Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.34-40
    • /
    • 2014
  • The effect of neonicochid type wood preservatives on adhesive properties of resorcinol-formaldehyde resin for laminated wood manufacture was examined. By the previous studies, it was verified that the neonicochid type preservative has a high termite-proofing and anti-mold effectiveness. Commercial ACQ (ammoniacal copper quaternary compounds) and CUAZ (copper azol compounds) were used as comparison preservatives of effects on adhesive properties. The wood specimens used japanese red pine (Pinus densifrora) after application with preservatives and then bonded with resorcinol-formaldehyde resin. Adhesive properties were evaluated by shearing strength of adhesive bond and wood failure to dry condition or after accelerated aging test. Of all laminated woods, the wood specimens spread with ACQ or CUAZ showed the lowest shearing strength of adhesive bond. We estimated that the decrease of shearing strength was caused by copper in the ACQ or CUAZ preservatives. On the application of the neonicochid type preservatives, the wood specimens showed the highest shearing strength even after accelerated aging test. From these results, it is concluded that the copper-free neonicochid type preservative not affected the curing of resorcinol-formaldehyde resin.

Experimental Evaluation of Shear Bonding Performance of Wood-Steel Composite Members (목재-강재 합성 부재의 전단 부착 성능에 대한 실험적 평가)

  • Park, Keum-Sung;Lee, Sang-Sup;Kwak, Myong-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.53-60
    • /
    • 2019
  • In this study, an experimental study was carried out to evaluate the bond shear performance according to the shear connector between the glue-laminated timber and steel interface. Ten block shear specimens were fabricated according to the configuration of the adhesive surface of wood and steel. In addition, four test specimens were produced according to the main variable shape of the wood-concrete shear connector. As a result of the block shear test, the shear strength of the steel-wood adhesive is shown to have a shear performance greater than the wood-wood shear strength. As a result of the push-out test according to the shape of the shear connector, the shear strength increased linearly with the attachment area. The complete composite behavior between the glued-laminated timber and the steel can be secured.

Structural Performance Evaluation on Stress-Laminated Timber Bridge Deck Using Finite Element Analysis (유한요소해석을 이용한 응력적층 바닥판의 구조성능평가)

  • Shin, Yukyung;Eom, Chang-Deuk;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • This paper represented the finite element analysis to estimate structural performance of stress-laminated deck, which is determined by deflection, stress, and aging characteristics of tensioning. After loading, the deflected shape showed plate behavior because pre-stressing make frictional force between each member. Compared between initial post-tension and the results, pre-stressing forces were decreased with deck deflection. This is because deflection occurred in the deck so that pre-stressing decreased due to load reduction. However, material plasticity was not considered so that advanced researches should be performed.