• Title/Summary/Keyword: laminated wood

Search Result 163, Processing Time 0.021 seconds

Static Bending Strength Performances of Hybrid Laminated Woods Composed of Wood-Wood Based Boards (목재와 목질보드 복합적층재의 휨강도성능)

  • Park, Han-Min;Moon, Sung-Jae;Choi, Yoon-Eun;Park, Jung-Hwan;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.546-555
    • /
    • 2009
  • To study an effective use of woods, three-ply hybrid laminated woods instead of crosslaminated woods which are composed of spruce in the face and three kinds of wood-based boards (MDF, PB, OSB) in the core were manufactured, and the effect of constitution elements for the core laminae on bending strength performances was investigated. Bending modulus of elasticity (MOE) of hybrid laminated woods had the highest values for the hybrid laminated wood types arranging OSB laminae in the core, and had the lowest values for those arranging MDF laminae in the core. These values were higher than those of various cross-laminated woods. The estimated bending MOEs of the hybrid laminated woods which were composed of perpendicular-direction lamina of spruce in the faces were similar to their measured values, regardless of wood-based boards in the core. However, those of the hybrid laminated woods which were composed of parallel-direction lamina of spruce in the faces had much higher values than those of their measured values, and it was necessary to revise the measured values. Bending modulus of rupture (MOR) of the hybird laminated woods had the highest value for those arranging OSB laminae in the core, and had the lowest values for those arranging PB laminae in the core unlike the bending MOE. By hybrid laminating, the anisotropy of bending strength performances was markedly decreased, and the differences of strength performances among wood-based boards were also considerably decreased.

Static Bending Strength Performance of Domestic Wood-Concrete Hybrid Laminated Materials (국내산 목재-콘크리트 복합적층재의 정적 휨 강도성능)

  • Byeon, Jin-Woong;Cho, Young-June;Lee, Je-Ryong;Park, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.48-56
    • /
    • 2016
  • In this study, to develop the lattice materials with a low environmental load for restoring the destroyed forest, 7 types of wood-concrete hybrid laminated materials were manufactured with domestic four softwoods, three hardwoods and concrete, and the effects of density of wood species on static bending strength performances were investigated. Bending MOEs of wood-concrete hybrid laminated materials increased with increasing density of wood species on the whole, and the values were higher than that of concrete by hybrid-laminating woods on the concrete. It was found that the measure values of bending MOEs were slightly lower than the calculated values calculated using equivalent cross-section method from MOE of each laminae of hybrid laminated materials and the difference between them was less than 10%. Bending proportional limit stresses of hybrid laminated materials showed 1.2-1.6 times higher than that of concrete by hybrid-laminating. Bending strength (MOR) of hybrid laminated materials increased with the density of wood species. By hybrid-laminating, the MOR of concrete was considerably increased. Therefore, it is considered that wood-concrete hybrid laminated materials can be applied as a materials with a low environmental load and durability for ecological restoration.

Measurement of Dynamic MOE of 3-Ply Laminated Woods by Flexural Vibration and Comparison with Blending Strength and Creep Performances

  • Park, Han-Min;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.46-57
    • /
    • 2006
  • To estimate nondestructively strength performances of laminated woods, 3-ply parallel- and cross-laminated wood specimens exposed under atmosphere conditions after bending creep test were prepared for this study. The effects of density of species, arrangement of laminae and lamination types on dynamic MOE obtained by flexural vibration were investigated, and regression analyses were conducted in order to estimate static bending strength and bending creep performances. Dynamic MOE of parallel-laminated woods showed 1.0~1.2 times higher values than static bending MOE, and those of cross-laminated woods showed 1.0~1.4 times higher values than static bending MOE. The degree of anisotropy of dynamic MOE perpendicular to the grain of face laminae versus that parallel to the grain of face laminae was markedly decreased by cross-laminating. There were strong correlations between dynamic MOE by flexural vibration and static bending MOE (correlation coefficient r = 0.919~0.972) or bending MOR (correlation coefficient r = 0.811~0.947) of 3-ply laminated woods, and the correlation coefficient were higher in parallel-laminated woods than in cross-laminated woods. It indicated that static bending strength performances were able to be estimated from dynamic MOE by flexural vibration. Also, close correlations between the reciprocal of dynamic MOE by flexural vibration and initial compliance at 0.008 h of 3-ply laminated woods were found (correlation coefficient r = 0.873~0.991). However, the correlation coefficient between the reciprocal of dynamic MOE and creep compliance at 168 h of 3-ply laminated woods was considerably lower than those between dynamic MOE and initial compliance, and it was hard to estimate creep compliance with a high accuracy from dynamic MOE due to the variation of creep deformation.

Mechanical Properties and Sound Absorption Capability of Shipbuilding Plywood Waste (조선산업 폐합판의 강도적 성질과 흡음성능)

  • Kang, Chun-Won;Kim, Gwang-Chul;Park, Hee-Jun;Kang, Wook
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.457-462
    • /
    • 2010
  • Sound absorption capability and bending strength of laminated ship-building plywood waste of maple and melanti wood were estimated. Sound absorption coefficients of wood had been measured by the two microphone transfer function method and bending strength examined by three point loading. The maximum strength in bending of laminated ship-building plywood waste of maple and melanti wood were 534 and 414 kgf/$cm^2$, respectively. The sound absorption coefficients of laminated ship-building plywood waste were higher than mongolian oak and fiber board, well used construction material. Especially, in the case of laminated ship-building plywood waste of melanti wood, average sound absorption coefficient was about 0.25. It was surmised that the laminated ship-building plywood waste can be used as interior materials because of its good mechanical and sound absorption properties.

Physical Properties of Fabric E-glass Fiber Reinforced Laminated Timber (I) - Mechanical Properties - (직물유리섬유 강화집성재의 물리적 특성(제1보) - 기계적 특성 -)

  • Jung, In-Suk;Lee, Weon-Hee;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.23-34
    • /
    • 2003
  • This study was carried out to investigate the mechanical properties of fabric E-glass fiber reinforced laminated timber. Specimens used to Korean red pine(Pinus densiflora) and Japanese larch(Larix kaemferi). Fabric E-glass fiber was inserted in the solid wood with aqueous polymer-isocyanate resin(MPU-500). The results were as follows: 1. Aqueous polymer-isocyanate resin(MPU-500) was good resin to manufacture laminated timber. specially, it was satisfied to property standard of construction laminated timber(KS F 3021) except for two ply glass fiber. 2. Bending and shear strengths of solid wood inserted with fabric glass fibers were not different from control solid wood. But, proportional limit bending stress was increased following the number of fabric glass fibers. Therefore, it was considered that to improve the bending and shear strength of fabric glass fiber reinforced laminated timber, the glass fiber thickness and its mesh should be modified to fitness following working conditions.

Flexural Behavior of Laminated Wood Beams Strengthened with Novel Hybrid Composite Systems: An Experimental Study

  • Mehmet Faruk OZDEMIR;Muslum Murat MARAS;Hasan Basri YURTSEVEN
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.526-541
    • /
    • 2023
  • Wooden structures are widely used, particularly in earthquake zones, owing to their light weight, ease of application, and resistance to the external environment. In this study, we aimed to improve the mechanical properties of laminated timber beams using novel hybrid systems [carbon-fiber-reinforced polymer (CFRP) and wire rope]. Within the scope of this study, it is expected that using wood, which is an environmentally friendly and sustainable building element, will be more economical and safe than the reinforced concrete and steel elements currently used to pass through wide openings. The structural behavior of the hybrid-reinforced laminated timber beams was determined under the loading system. The experimental findings showed that the highest increase in the values of laminated beams reinforced with steel ropes was obtained with the 2N reinforcement, with a maximum load of 38 kN and a displacement of 137 mm. Thus, a load increase of 168% and displacement increase of 275% compared with the reference sample were obtained. Compared with the reference sample, a load increase of 92% and a displacement increase of 14% were obtained. Carbon fabrics placed between the layers with fiber-reinforced polymer (FRP) prevented crack development and provided significant interlayer connections. Consequently, the fabrics placed between the laminated wooden beams with the innovative reinforcement system will not disrupt the aesthetics or reduce the effect of earthquake forces, and significant reductions can be achieved in these sections.

The Study of the Changeable Table Design with Units that made of Wasted Wood (소경단목재(小輕短木材) 접목을 활용한 유니트 가변형 테이블디자인 연구개발)

  • Kim, Myeong-Tae;Seo, Seok-Min
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.1
    • /
    • pp.26-37
    • /
    • 2012
  • This is the study about the New Formation Developement, the Changeable Table Design with Units that made of Wasted Wood to use restricted material rationally and to improve the space efficiency in the Table Design. We made some changeable table design with units that made of laminated wood wasted. And we found out the following formative characteristic and physical merits through this study. First, the space efficiency can be improve technically through the unit combination and organic transfomation of the specific form and a new method by laminated wood make the personal originality and the structral stability be built up. Second, there are some merits, moveable convenience and variable layout by the combination or transformation or personal fondness so that economical efficiency and variable of design can be improved. Third, we can remove original faults inside wood like a knot or not-uniform of wood organ when we laminate wood so that we use proper units that have original beauty of wood and can represent mild mood of furniture wholly. Fourth, much more strengthen tensile strength by the reciprocal action among the units that be made of laminated wood reduces wood's metamorphosis like bending or twisting so that the uniformity of wood can be gain and furniture's metamorphosis can be reduced. According to changes of nature environment, the difficulty of supply and demand for wood may be happen. According to changes of life style these days, supply and demand for environment friendly material, processing technique and developement of design to improve the efficiency of using space must be very important factor in morden furniture design. So we propose changeable furniture design by using new environment friendly meterial and processing method from this study.

  • PDF

Study on the Mechanical Properties of Tropical Hybrid Cross Laminated Timber Using Bamboo Laminated Board as Core Layer

  • GALIH, Nurdiansyah Muhammad;YANG, Seung Min;YU, Seung Min;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.245-252
    • /
    • 2020
  • This study was performed to analyze the mechanical properties of tropical hybrid cross-laminated timber (CLT) with bamboo laminated board as the core layer in order to evaluate the possibility of its use as a CLT material. Bamboo board was used as the core layer and the tropical species Acacia mangium willd., from Indonesia, was used as the lamination in the outer layer. The modulus of elasticity (MOE), modulus of rupture (MOR), and shear strength of the hybrid CLT were measured according to APA PRG 320-2018 Standard for Performance-Rated Cross-Laminated Timber. The results show that the bending MOE of the hybrid CLT was found to be 2.76 times higher than SPF (Spruce Pine Fir) CLT. The reason why the high MOE value was shown in bamboo board and hybrid CLT applied bamboo board is because of high elasticity of bamboo fiber. However, the shear strength of the hybrid CLT was 0.8 times lower than shear strength of SPF CLT.

Evaluation of Physical, Mechanical Properties and Pollutant Emissions of Wood-Magnesium Laminated Board (WML Board) for Interior Finishing Materials

  • PARK, Hee-Jun;JO, Seok-Un
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.86-94
    • /
    • 2020
  • This study serves as basic research for the development of a new wood-based building finishing material that improved the weakness of inorganic materials such as gypsum board and magnesium board widely used as interior finishing materials and brought out the strength of the wood. The results of evaluating the physical and mechanical properties and the environmental effect related to hazardous substance discharge having manufactured a wood-magnesium laminated composite are as follows. The thermal conductivity and thermal resistance of WML board was improved by about 28~109 percent over magnesium board due to the low thermal conductivity of wood. The adhesive strength of WML board showed a similar result to that of plywood as it exceeds 0.7N/㎟, the adhesive standard of wood veneer which is presented by KS F 3101. Bending strength and screw holding strength were more improved by manufacturing WML board than magnesium board. The WML board manufactured in this study satisfied the criteria for emissions of hazardous substances prescribed in the Indoor Air Quality Control Act, and confirmed the possibility of development as a new wood-based composite material that can replace existing inorganic materials.

Performance of Structural Glulam Manufactured with Fire Retardants Treated Lumbers (난연처리 제재목으로 제조한 구조용 집성재의 강도 성능평가)

  • Son, Dong-Won;Eom, Chang-Deuk;Park, Jun-Cheol;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.477-482
    • /
    • 2014
  • Consumer demand for wood use has diversified recently. Laminated wood has been used for large-scale buildings and public buildings, not only the durability but also the demand for fire safety has increased. In this study. it was performed for the purpose of developing a standard and flame-retardant treatment technology suitable for structural laminated wood, which was prepared in domestic larch. In this study, by using the domestic larch and Korean pine lumber which treated with flame-retardants, to manufacture the glulam, the effect of strength properties were investigated. In the case of fire retardant treated larch Glulam was satisfactory conditions of the strength of structural laminated wood, but had to be improved, such as the occurrence of delamination and decrease strength by the flame retardant treatment. Development of application-type flame retardant treatment technology or injection-type flame retardant treatment after production of laminated lumber were required.