• Title/Summary/Keyword: laminated angle

Search Result 222, Processing Time 0.027 seconds

Low velocity impact response and dynamic stresses of thick high order laminated composite truncated sandwich conical shell based on a new TDOF spring-mass-damper model considering structural damping

  • Azizi, A.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.771-791
    • /
    • 2018
  • This paper deals with the low velocity impact response and dynamic stresses of composite sandwich truncated conical shells (STCS) with compressible or incompressible core. Impacts are assumed to occur normally over the top face-sheet and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The displacement fields of core and face sheets are considered by higher order and first order shear deformation theory (FSDT), respectively. Considering continuity boundary conditions between the layers, the motion equations are derived based on Hamilton's principal incorporating the curvature, in-plane stress of the core and the structural damping effects based on Kelvin-Voigt model. In order to obtain the contact force, the displacement histories and the dynamic stresses, the differential quadrature method (DQM) is used. The effects of different parameters such as number of the layers of the face sheets, boundary conditions, semi vertex angle of the cone, impact velocity of impactor, trapezoidal shape and in-plane stresses of the core are examined on the low velocity impact response of STCS. Comparison of the present results with those reported by other researchers, confirms the accuracy of the present method. Numerical results show that increasing the impact velocity of the impactor yields to increases in the maximum contact force and deflection, while the contact duration is decreased. In addition, the normal stresses induced in top layer are higher than bottom layer since the top layer is subjected to impact load. Furthermore, with considering structural damping, the contact force and dynamic deflection decrees.

A Study on Behavior of Anisotrpic Circular Cylingdrical Shell including Large Deformation Effects (대변형 효과를 고려한 비등방성 원통형 쉘의 거동에 관한 연구)

  • Chun, Kyoung Sik;Son, Byung Jik;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.489-497
    • /
    • 2002
  • Nonlinear behavior and large deformation cannot be analyzed using techniques based on linear theory. Nonetheless, they are emerging as gradually huge and complex structures. In addition, the optimum design of structure is necessary in the development of high-performance computation and numerical methods. as well as stricter design-criterion. Therefore, the structural problems in engineering that are limited to the linear region must be extended to the nonlinear region. Likewise, structural behavior must be accurately analyzed. In turn, this requires considering the expected problems beforehand. Only then can an efficient, economical, and optimized structure be designed. This paper presents the solution of the geometrical nonlinear problem of anisotropic cylindrical shell. The characteristics of the geometrical nonlinear behavior of anisotropic circular cylindrical shells may vary according to several causes. e.g., change of fibers, curvature in the circumferential direction, subtended angle, aspect, etc. Parametric studies were conducted to determine the effect of factors on the large deflection behavior of laminated shells, with interesting observations.

Simplified Analytical Model for Flexural Response of Fiber Reinforced Plastic Decks (FRP 바닥판의 휨 해석모델 개발)

  • Kim, Young-Bin;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.65-74
    • /
    • 2005
  • An analytical model was developed to investigate the flexural behavior of a pultruded fiber-reinforced plastic deck of rectangular unit module. The model is based on first-order shea. deformable plate theory (FSDT), and capable of predicting deflection of the deck of arbitrary laminate stacking sequences. To formulate tile problem, two-dimensional plate finite element method is employed. Numerical results are obtained for FRP decks under uniformly-distributed loading, addressing the effects of fiber angle and span-to-height ratio. It is found that the present analytical model is accurate and efficient for solving flexural behavior of FRP decks. Also, as the height of FRP deck plate is higher, the necessity of higher order Shear deformable plate theory(HSDT) is announced, not the FSDT in the plate analysis theory.

  • PDF

A Study on the Effect of Polyetherimide Surface Treatment on the Adhesion and High Temperature/High Humidity Reliability of MCM-D Interface (Polyetherimide 접착제의 표면 처리에 따른 MCM-D 계면 접착력 및 고온고습 신뢰성 변화에 관한 연구)

  • Yoon, Hyun-Gook;Ko, Hyoung-Soo;Paik, Kyung-Wook
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1176-1180
    • /
    • 1999
  • The adhesion strength and high temperature/high humidity reliability of polyetherimide (PEI) adhesive on silicon wafer after being treated by each reactive ion etching (RIE) Aluminum (Al)-chelate adhesion promoter were investigated. 180$^{\circ}$ peel test and <85$^{\circ}C$ 85%> humidity test were performed for the initial adhesion strength and high temperature/high humidity reliability, respectively. For investigating surface effect scanning electron microscope (SEM), atomic force microscope (AFM), deionized (DI)-water contact angle studies were carried out. To investigate RIE effect, PEI was treated with $^O_2$ RIE, and then laminated. The initial peel strength increased slightly from 1.6 kg/cm for the first 2 minutes, and then decreased. High temp/high humid resistance decreased rapidly by RIE etching. RIE treatment on PEI affected on both of roughness and hydrophilicity increase. Aluminum-chelate adhesion promoter was coated by spinning on silicon wafer. The initial peel strength showed no effect of adhesion promoter treatment, but high temp/high humidity resistance increased remarkably. Al-chelate adhesion promoter did not affect the roughness but increased hydrophilicity.

  • PDF

Design and Analysis of Section-divided Circular Composite Wing Spar (단면분할 원통형 복합재료 날개 보 설계 및 해석)

  • Kim, Ki-Hoon;Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.687-694
    • /
    • 2019
  • A circular composite spar in the wing of ultra-light aircraft is subjected to both bending moment and transverse shear loads. However, the beam being used in the aircraft may be inefficient because the design would not take into account the characteristics of the circular tube that supports the bending moment in top and bottom arc parts and the transverse load in left and right ones. Therefore, it is necessary to efficiently fabricate the circular tube beam by properly selecting the stacking sequences or the laminated composite structure. In order to increase both bending and transverse shear strengths of the beams, in this study, a cross-section of circular tube is divided into four arcs: top, bottom, left and right ones. The commercial program, MSC/NASTRAN is used to calculate vertical displacement and the normal and shear strains with variation of parameters such as division angle of arc and fiber orientation. Based on the results, the effective parameters for the new circular composite beam are presented to increase its bending and shear strengths.

Development of the Splint Manufacturing Process Using Indirect Coating and Roll Bonding (간접 코팅과 롤 접합을 이용한 의료용 스플린트 제작 및 공정기술 개발)

  • Ha, Kyoung-Ho;Kang, Dae-Min;Lee, Jung-Hee;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.1-6
    • /
    • 2019
  • With the increase in number of the athletic population and elderly demographic, the demand for orthopedic splints, which are used to support a damaged body, has rapidly increased. Current splints mainly consist of inner and outer parts, which are multiple fabrics covered with polyurethane and nonwoven fabrics, respectively. However, the laminated materials with directly applied pre-polymer coating lead to a high defect rate because of the uneven thickness on the surface. Thus, this study proposes an indirect coating method using a precise clearance controller, which enables the even application of the coating material on multiple inner parts while maintaining a constant thickness. In addition, a roll-to-roll (R2R) technique is applied instead of the sewing mechanism to bond the inner and outer materials together and enhance the productivity in the final stage. In the advanced methods, there is a storage tank that contains polyurethane, a clearance controller, and pairs of rollers in the upper and lower rows. To improve the quality of the products and optimize the equipment, three controllable factors are determined: the viscosity of polyurethane, angle of the gap controller and number of pairs of rollers in the R2R system.

Effects of Density, Temperature, Size, Grain Angle of Wood Materials on Nondestructive Moisture Meters

  • Pang, Sung-Jun;Jeong, Gi Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.40-50
    • /
    • 2019
  • The aim of this study was to investigate the effects of density, temperature, size, and grain direction on measurement of moisture contents (MC) of wood materials non-destructively. The MC of different sizes of solid wood, glulam, and CLT from larch (larix kaempferi, $560kg/m^3$) and pine (pinus koraiensis, $430kg/m^3$) were measured using the dielectric type and resistance type meters. The specimens were conditioned in the environmental chamber to be equilibrium moisture content (EMC) of 12 % and 19 %. When density setting in dielectric type meter was increased from $400kg/m^3$ to $600kg/m^3$, the MCs of specimen (S-L-100-E) were decreased from 13.4 % to 11.3 %. However, when wood group (WG) setting in resistance type meter was changed from WG1 to WG4, the measured MCs were increased from 9.2 % to 12.3 %. When temperature setting in resistance type meters was changed from 0 to $35^{\circ}C$, the MC was decreased from 17.0 % to 13.0 %. The MCs measured by dielectric type meter for larger specimens (S-L-100-E_11.3 %, G-L-240-E_11.7 % and C-L-120-E_12.8 %) were higher than those of small size specimens (S-L-30-E_8.7 %, G-L-150-E_10.3 %, and C-L-90-E_9.7 %). The MCs measured by resistance type meter for larger specimens (G-L-240-E_11.6 % and C-L-120-E_13.3 %) were also higher than those of small size specimens (G-L-150-E_10.4 %, and C-L-90-E_11.8 %). The resistance type meter was not affected by the grain direction but the dielectric type meter were affected by the grain direction. The MC measured by resistance type meter for G-L-120-E perpendicular to grain direction was 11.5 % and the measured MC parallel to grain direction was 11.3 %. The MC measured by dielectric type meter parallel to grain direction (12.1 %) was higher than that measured perpendicular to grain direction (10.7 %).

Static Strength of Composite Single-lap Joints Using I-fiber Stitching Process with different Stitching Pattern and Angle (I-fiber Stitching 공법을 적용한 복합재료 Single-lap Joint의 Stitching 패턴과 각도에 따른 정적 강도 연구)

  • Song, Sang-Hoon;Back, Joong-Tak;An, Woo-Jin;Choi, Jin-Ho
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.296-301
    • /
    • 2020
  • Laminated composite materials have excellent in-plane properties, but are vulnerable in thickness directions, making it easy to delamination when bending and torsion loads are applied. Thickness directional reinforcement methods of composite materials that delay delamination include Z-pinning, Stitching, Tufting, etc., and typically Z-pinning and Stitching method are commonly used. The Z-pinning is reinforcement method by inserting metal or carbon pin in the thickness direction of prepreg, and the conventional stitching process is a method of reinforcing the mechanical properties in the thickness direction by intersecting the upper and lower fibers on the preform. In this paper, I-fiber stitching method, which complement and improve weakness of Z-pinning and Stitching method, was proposed, and the static strength of composite single-lap joints using I-fiber stitching process were evaluated. The single-lap joints were fabricated by a co-curing method using an autoclave vacuum bag process. The thickness of the composite adherend was fixed, and 5 types of specimens were manufactured with varying the stitching pattern (5×5, 7×7) and angle (0°, 45°). From the test, the failure load of the specimen reinforced by the I-fiber stitching process was increased by up to 143% compared to that of specimen without reinforcement.

Neaushore sedimentary environments of the Sinyangri Fornation in Cheju Island, Korea (제주도 신양리층의 연안퇴적환경)

  • 한상준;윤호일
    • 한국해양학회지
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 1987
  • The Sinyangri Formation crops out in the vicinity of the Seongsan Peninsula, Cheju Island. Based on sedimentary structures, texture and composition, the lithologic sequence has been classified, in ascending stratigraphic order, into three lithofacies: parallel laminated sandstone facies (Facies I): conglomerate facies(Facies Il); and cross stratified sandstone facies (F acies Ill). Wedge-to-parallel, seaward-inclined in low angle less than 10$^{\circ}$lamina -sets with alternations of coarseand fine-grained sediments in the Facies I are the characteristic sedimentary structures in the foreshore depositional environment. Grains of this faciesare well sorted with good roundness compared with the other two facies, partly showing inverse graded bedding. Facies II,largely composed of claset-supported,very poorly-sorted conglomerates,does not pinch out but occurs continuously along the Sinyangri beach.Interstitial spaces between the clasts are mostly infilled with volcanic-ash and small amounts of well-rounded shell fragments.Maximum bed thickness as well as the size of imbedded basaltic clasts decreases to the south(toward Sinyangri). Large clasts with parallel lamination originated from the underlying Facies i,are generally elongated parallel to the bedding plane and display no systematic horizontal variations in size indicative of in-situ clasts.In view of the facts above it seems that large gravels from the basaltic rocks are transgressive lag conglomerates which are partly affected by the combination of longshore currents and propagating wave.Local occurrence of cross-strata dipping toward the south in the upper part of Facies IIreinforces the evidence of the action of longshore currents. Facies IIIis characterized by bidirectional trough cross-starifiction and wave ripples associated with the upper shoreface(surfzone) environments.In summary,the Sinyangri Formation represents the depositional environments of foreshore to upper shoreface truncated by disconformity between Facies Iand II.

  • PDF

Fabrication of Ceramic-based Graphene Membrane (CbGM) and Its Mass Transport Behavior for Water Treatment (수처리용 세라믹 기반 그래핀 맴브레인의 합성 및 물질이동특성)

  • Kim, Chang-Min;Park, Ki-Bum;Kim, Kwang-Soo;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.11
    • /
    • pp.649-655
    • /
    • 2015
  • As a novel water treatment membrane, concept of ceramic-based graphene membrane (CbGM) was suggested, and its mass transport behavior was investigated. The selectivity of CbGM was given by graphene material which is consisting of active layer, only transmitting water, but rejecting salts. Filtration-assisted assembly methods was employed as a facile method to fabricate CbGM. Surface morphology and characteristics of CbGM were analyzed by scanning electron microscopy (SEM) and contact angle. In addition, three different kinds of solutes (i.e., NaCl, $MgCl_2$, $Na_2SO_4$) were tested in batch forward osmosis system to confirm the mass transport behavior. Through surface morphology analysis and mass transport behavior, it was revealed that interlocking between graphene layers is very important, rather than thickness of laminated graphene layers, in terms of selectivity to CbGM. All the anions in each solute showed faster transport than those of cations. In addition, solutes which have high ion valence charge ratio of anion to cation ($Z^-/Z^+$) was easier to be passed through CbGM. It indirectly implied that the surface charge of CbGM appear to be positive. In addition, It showed that surface charge of CbGM has a great role on mass transport, in particular, transport of matter having charges, generally ions.