• 제목/요약/키워드: laminate sequence

검색결과 81건 처리시간 0.024초

Axial buckling response of fiber metal laminate circular cylindrical shells

  • Bidgoli, Ali M. Moniri;Heidari-Rarani, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제57권1호
    • /
    • pp.45-63
    • /
    • 2016
  • Fiber metal laminates (FMLs) represent a high-performance family of hybrid materials which consist of thin metal sheets bonded together with alternating unidirectional fiber layers. In this study, the buckling behavior of a FML circular cylindrical shell under axial compression is investigated via both analytical and finite element approaches. The governing equations are derived based on the first-order shear deformation theory and solved by the Navier solution method. Also, the buckling load of a FML cylindrical shell is calculated using linear eigenvalue analysis in commercial finite element software, ABAQUS. Due to lack of experimental and analytical data for buckling behavior of FML cylindrical shells in the literature, the proposed model is simplified to the full-composite and full-metal cylindrical shells and buckling loads are compared with the available results. Afterwards, the effects of FML parameters such as metal volume fraction (MVF), composite fiber orientation, stacking sequence of layers and geometric parameters are studied on the buckling loads. Results show that the FML layup has the significant effect on the buckling loads of FML cylindrical shells in comparison to the full-composite and full-metal shells. Results of this paper hopefully provide a useful guideline for engineers to design an efficient and economical structure.

T800/924C 탄소-에폭시 복합재판의 압축강도에 대한 두께 효과 (Thickness Effect on the Compressive Strength of T800/924C Carbon Fibre-Epoxy Laminates)

  • Lee, J.;C. Kong;C. Soutis
    • Composites Research
    • /
    • 제17권4호
    • /
    • pp.7-17
    • /
    • 2004
  • 본 연구에서 복합재의 압축 강도에 대한 두께 효과가 $[0_4]_{ns},{\;}[45/0/-45/90]_{ns},{\;}[45_n/0_n/-45_n/90_n]_s$ (n=2 to 8) 등의 적층 방법을 이용하여 체계적인 실험을 통해 조사되었다. 여기서 섬유 체적비, 기공률, 섬유 굴곡도, 층간 응력 등, 적층 두께 증가에 따른 압축 강도에 영향을 주는 파라미터들이 실험과 이론적으로 연구되었다. 또한 엇교차 대칭 복합재판의 파괴강도에 대한 적층 순서 효과도 조사되었다. 이를 위해 2종류의 다른 스케일링 효과를 갖는 (1) 폰라이-레벨 기법인 $[45_n/0_n/-45_n/90_n]_s$과 (2) 서브라미네이트-레벨 기법인 $[45_n/0_n/-45_n/90_n]_s$가 적용되었다. 일 방향 적층 시편 $[0_4]_{ns}$과 플라이-레벨인 $[45_n/0_n/-45_n/90_n]_s$에는 분명한 두께효과를 나타내었다. 그리고 섬유 굴곡도와 기공률의 두께효과에 기여하는 주요 파라미터 들임이 확인되었다. 그러나 서브라미네이트-레벨인 $[45/0/-45/90]_{ns}$의 압축강도는 시편 두께의 변화에도 불구하고 별 영향을 나타내지 않았으면, 서브라미네이트- 레벨 시편에서 구한 강토가 플라이-레벨 시편에서 구한 강도보다 약간 높았다. 이 같은 효과에 대한 이유는 섬유 굴곡도, 기공률, 자유단 효과 및 $0^{\circ}$층과 비 $0^{\circ}$층 사이의 응력 재 분포에 의한 영향인 것으로 보인다. 측정된 파괴강도는 예측 값과 비교되었다.

적층각을 고려한 복합재료 라미네이트 자전거 휠의 설계 (Design of Composite Laminate Bicycle Wheel considering Stacking Sequence)

  • 이진아;홍형택;강경탁;전흥재
    • Composites Research
    • /
    • 제25권5호
    • /
    • pp.141-146
    • /
    • 2012
  • 본 논문에서는 Tsai-Wu 파손이론을 적용하여 Carbon/Epoxy 복합재 적층판으로 이루어진 자전거 휠의 경량화를 위한 적층수와 적층각에 대한 강도설계에 대하여 연구하였다. 복합재료는 적층수와 적층각에 따라 강도와 강성이 변하기 때문에 적용되는 설계 하중 조건에 따른 구조물의 최취약부에서 파손이 일어나지 않도록 최적의 적층각과 최소의 적층수를 찾아야한다. 따라서 유한요소해석을 이용하여 복합재 자전거 휠에 부가되는 수직, 복합하중조건에 대하여 가장 안정적인 적층수 및 적층각을 구하였다. 휠에 적용되는 적층각은 $[0]_{8n}$, $[90]_{8n}$, $[0/90]_{2ns}$, $[{\pm}45]_{2ns}$, $[0/{\pm}45/90]_{ns}$으로 적층수를 변화시켜가며 유한요소해석을 수행하였다. 해석 결과로부터 $[0/{\pm}45/90]_{3s}$의 적층각이 파손에 안정적인 적층각 임을 제안하였다. 또한 이를 통하여 휠의 최취약부를 알 수 있었다.

적층된 복합소재 경사판의 기하학적 비선형 동적 거동에 미치는 매개변수 영향 (Parametric effects on geometrical nonlinear dynamic behaviors of laminated composite skew plates)

  • 이상열
    • Composites Research
    • /
    • 제25권6호
    • /
    • pp.217-223
    • /
    • 2012
  • 본 연구는 복합소재로 구성된 적층 경사판의 비선형 동적 거동을 분석한다. 1차 전단 변형 판이론에 기반하여, 비선형 동적 방정식의 해는 Newmark 방법과 Newton-Raphson 반복법을 혼용하여 적용하여 산정하였다. 본 연구에서 개발한 유한요소 해석프로그램을 사용하여 개구부의 크기 또는 판의 경사각, 그리고 적층 배열의 변화가 판의 기하학적 비선형 거동에 미치는 영향을 상세 분석하였다. 몇 가지 수치해석 결과는 기존 연구자로부터 얻어진 결과와 잘 일치하는 것으로 나타났다. 본 연구의 새로운 결과는 경사 적층 구조의 중앙 개구부의 크기 또는 판의 경사각도, 그리고 적층 배열과의 중요한 상호관계를 보여준다. 몇 가지 수치예제는 개구부를 갖는 적층 판구조를 설계하는데 필요한 가이드라인을 제시하였다.

Composite material optimization for heavy duty chassis by finite element analysis

  • Ufuk, Recep;Ereke, Murat
    • Advances in Automotive Engineering
    • /
    • 제1권1호
    • /
    • pp.41-59
    • /
    • 2018
  • In the study, investigation of fiber- reinforced composite materials that can be an alternative to conventional steel was performed by finite element analysis with the help of software. Steel and composite materials have been studied on a four axle truck chassis model. Three-dimensional finite element model was created with software, and then analyzes were performed. The analyses were performed for static and dynamic/fatigue cases. Fatigue cases are formed with the help of design spectra model and fatigue analyses were performed as static analyses with this design spectra. First, analyses were performed for steel and after that optimization analyses were made for the AS4-PEEK carbon fiber composite and Eglass-Epoxy fiber composite materials. Optimization of composite material analyzes include determining the total laminate thickness, thickness of each ply, orientation of each ply and ply stacking sequence. Analyzes were made according to macro mechanical properties of composite, micromechanics case has not been considered. Improvements in weight reduction up to %50 provided at the end of the composite optimization analyzes with satisfying stiffness performance of chassis. Fatigue strength of the composite structure depends on various factors such as, fiber orientation, ply thickness, ply stack sequence, fiber ductility, ductility of the matrix, loading angle. Therefore, the accuracy of theoretical calculations and analyzes should be correlated by testing.

곡률변화가 CFRP 적층쉘의 관통특성에 미치는 영향 (The Effects of Curvature Change on Penetration Characteristics of CFRP Laminate shell)

  • 조영재;이상훈;김영남;양인영
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.274-279
    • /
    • 2004
  • Currently, carbon-fiber reinforced plastics(CFRP) are widely used in both space and civil aircraft due to their superior stiffness and strength to weight ratios compared to conventional metallic materials. This paper is to study the effects of curvature and stacking sequence on the penetration characteristics of composite laminated shell. And were performed to investigate the penetration characteristics of composite laminated shells by the oblique impact. They are stacked to [0$_3$/90$_3$]s, [90$_3$/0$_3$]s and [0$_2$/90$_3$/0]s, [90$_2$/0$_3$/90]s their interlaminar number two and fore. They are manufactured to varied curvature radius (R=100, 150, 200mm and $\infty$). When the specimen is subjected to transverse impact by a steel ball, the velocity of the steel ball was measured both before and after impact by determining the time for it to pass two ballistics-screen sensor located a known distance apart. In general, the critical penetration energy interface decrease and slope angle on the impact surface increased. [0$_3$/90$_3$]s and [0$_2$/90$_3$]s specimens higher than [90$_3$/0$_3$]s and [90$_2$/0$_3$/90]s specimens.

  • PDF

The effects of stacking sequence on the penetration-resistant behaviors of T800 carbon fiber composite plates under low-velocity impact loading

  • Ahmad, Furqan;Hong, Jung-Wuk;Choi, Heung Soap;Park, Soo-Jin;Park, Myung Kyun
    • Carbon letters
    • /
    • 제16권2호
    • /
    • pp.107-115
    • /
    • 2015
  • Impact damages induced by a low-velocity impact load on carbon fiber reinforced polymer (CFRP) composite plates fabricated with various stacking sequences were studied experimentally. The impact responses of the CFRP composite plates were significantly affected by the laminate stacking sequences. Three types of specimens, specifically quasi-isotropic, unidirectional, and cross-ply, were tested by a constant impact carrying the same impact energy level. An impact load of 3.44 kg, corresponding to 23.62 J, was applied to the center of each plate supported at the boundaries. The unidirectional composite plate showed the worst impact resistance and broke completely into two parts; this was followed by the quasi-isotropic lay-up plate that was perforated by the impact. The cross-ply composite plate exhibited the best resistance to the low-velocity impact load; in this case, the impactor bounced back. Impact parameters such as the peak impact force and absorbed energy were evaluated and compared for the impact resistant characterization of the composites made by different stacking sequences.

변형률-수명 평가기법을 이용한 Al/CFRP 하이브리드 적층 복합재의 피로수명 측정 (The Estimation of Fatigue Life for Al/CFRP Hybrid Laminated Composites using the Strain-Life Method)

  • 양성진;권오헌;전상구
    • 한국안전학회지
    • /
    • 제36권3호
    • /
    • pp.7-14
    • /
    • 2021
  • Hybrid laminated Al/carbon-fiber-reinforced plastic (CFRP) composites are attracting considerable attention from industries such as aerospace and automobiles owing to their excellent specific strength and specific rigidity. However, when this material is used to fabricate high-pressure fuel storage containers subjected to repeated fatigue loads, fatigue life evaluation for the working load is regulated as an important criterion for operational safety and ease of maintenance. Among the existing evaluation methods for these vessels, the burst test and the hydraulic repeat test require expensive facilities. Thus, the present study aims to develop an improved fatigue life test for Al/CFRP laminated hybrid composites. The test specimen was manufactured using a curved mold considering the shape of a type III high-pressure storage container. The strain-life method was used for fatigue life evaluation, and the life was predicted based on the transition life. The results indicate that the more complex the CFRP stacking sequence, the longer is the transition life. This test method is expected to be useful for ensuring the fatigue safety and economy of hybrid laminate composites.

Effect of the composite patch beveling on the reduction of stresses in 2024-T3 Aluminum structure damaged and repaired by composite, hybrid patch repair

  • Belhoucine, A.;Madani, K.
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.17-30
    • /
    • 2022
  • The use of composite patches for the reduction of stresses at the level of the damaged zone in aeronautical structures has experienced rapid expansion given its advantages over conventional mechanical processes (riveting, bolting, etc.). Initially, The research axes in this field were aimed at choosing suitable mechanical properties for the composite and the adhesive, then to optimize the shape of the composite patch in order to ensure good load transfer and avoid having a debonding at the level of the edges essentially for the case of a repair by single side where the bending moment is present due to the non-symmetry of the structure. Our work falls within this context; the objective is to analyze by the finite element method the fracture behavior of a damaged plate repaired by composite patch. Stress reduction at the edge is accomplished by creating a variable angle chamfer on the composite patch. The effects of the crack length, the laminate sequence and the nature of the patch as well as the use of a hybrid patch were investigated. The results show clearly that a beveled patch reduces the stress concentrations in the damaged area and even at its edges. The hybrid patch also ensures good durability of the repair by optimizing its stacking sequence and the location of the different layers according to the fibers orientations.

고속충격을 받는 CFRP 복합재료의 잔류강도 예측 (Prediction of Residual Strength of CFRP Subjected to High Velocity Impact)

  • 박근철;김문생
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.600-611
    • /
    • 1994
  • The purpose of this research is to propose a model for the prediction of residual strength. For this purpose, two-paremeter model based on Caprino's is developed and formulated by the ratio of indentation due to impact and normalized residual strength. The damage zone is considered only as an indentation. Impact tests are carried out on laminated composites by steel balls. Test material is carbon/epoxy laminate. The specimens are composed of $[{\pm}45^{\circ}/0^{\circ}/90^{\circ}]_2$ and $[\pm}45^{\circ}]_4$ stacking sequence and have $0.75^T{\times}0.26^W{\times}100^L(mm) dimension. A proposed model shows a good correlation with the experimental results And failure mechanism due to high impact velocity is discussed on CFRP laminates to examine the initiation and development of damage by fractography and ultrasonic image ststem. The effect of the unidirectional ply position on the residual strength is considered here.