• 제목/요약/키워드: laminar combustion velocity

검색결과 112건 처리시간 0.023초

층류화염 유동속도 측정을 위한 modulated LII 기법 (Modulated LII technique for the Measurement of Flow Velocity in Laminar Flames)

  • 이원남;이정수;남연우
    • 한국연소학회지
    • /
    • 제11권3호
    • /
    • pp.36-43
    • /
    • 2006
  • The modulated LII technique has been suggested for the measurement of axial velocity profiles of laminar diffusion flames. The theoretical background is explained based on the blackbody radiation and LII signal. Experimentally, soot particles in ethylene diffusion flames are heated by a modulated Ar-ion laser beam. LII signals and their phase angles are measured using a lock-in amplifier at the different flame heights and the axial flow velocities are obtained from the measured phase angle delay informations. The measured velocities are similar to those from LDV measurements under the same operating conditions. The effects of laser power, LII signal wavelength, and modulation frequencies are not sensitive to the velocity measurement. However, the choice of an optical chopper blade type could affect the measurement result. The use of a 6/5 chopper blade showed the better result that is. possibly due to the square shape of modulated laser beam. This study successfully demonstrated that axial flow velocities of laminar diffusion flames can be measured by a new technique utilizing LII signal, which does not need particle seeding unlikely to LDV or PIV techniques.

  • PDF

SNG 연료의 셀 불안정성 및 층류연소속도에 관한 실험적 연구 (An Experimental on Cellular Instability and Laminar Burning Velocity of SNG Fuel)

  • 김동찬;조준익;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.109-112
    • /
    • 2015
  • This article describes a cellular instability and laminar burning velocity of simulated synthetic natural gas(SNG) including 3% hydrogen. In this study, experimental apparatus is employed using cylindrical bomb combustor, and investigation is carried out with high speed camera and Schlieren system. The cellular instability is caused by the buoyancy, hydrodynamic instability. Unstretched burning velocity can be determined by extrapolated stretch rate of zero point from measured results. These results were also compared with numerical calculation by Chemkin package with GRI 3.0, USC-II, WANG, C3 Fuel mechanism. As an experimental conditions, equivalence ratios was adjusted from 0.8 to 1.3. From results of this work, the one was found that the cellular instability has occurred by effect of thermal expansion rate and flame thickness. As the other results, unstretched laminar burning velocity was best coincided with GRI 3.0 mechanism.

  • PDF

Experimental Study on Turbulent Burning Velocities of Two-Component Fuel Mixtures of Methane, Propane and Hydrogen

  • Kido, Hiroyuki;Nakashima, Kenshiro;Nakahara, Masaya;Hashimoto, Jun
    • 한국연소학회지
    • /
    • 제6권2호
    • /
    • pp.1-7
    • /
    • 2001
  • In order to elucidate the turbulent burning velocity of the two-component fuel mixtures, the lean and rich two-component fuel mixtures, where methane, propane and hydrogen were used as fuels, were prepared keeping the laminar burning velocity nearly the same value. Clear difference in the measured turbulent burning velocity at the same turbulence intensity can be seen among the two-component fuel mixtures with different addition rate of fuel, even under nearly the same laminar burning velocity. The burning velocities of lean mixtures change almost monotonously as changing addition rate, those of rich mixtures, however, do not show such a monotony. These phenomena can be explained qualitatively from the local burning velocities, estimated by considering the preferential diffusion effect for each fuel component. In addition, a prediction expression of turbulent burning velocity proposed for the one-component fuel mixtures can be applied to the two-component fuel mixtures by using the estimated local burning velocity of each fuel mixture.

  • PDF

구형 화염핵 발달과정의 예측 (Prediction of Development Process of the Spherical Flame Kernel)

  • 한성빈;이성열
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.59-65
    • /
    • 1993
  • In a spark ignition engine, in order to make research on flame propagation, attentive concentration should be paid on initial combustion stage about the formation and development of flame. In addition, the initial stage of combustion governs overall combustion period in a spark ignition engine. With the increase of the size of flame kernel, it could reach initial flame stage easily, and the mixture could proceed to the combustion of stabilized state. Therefore, we must study the theoretical calculation of minimum flame kernel radius which effects on the formation and development of kernel. To calculate the minimum flame kernel radius, we must know the thermal conductivity, flame temperature, laminar burning velocity and etc. The thermal conductivity is derived from the molecular kinetic theory, the flame temperature from the chemical reaction equations and the laminar burning velocity from the D.K.Kuehl's formula. In order to estimate the correctness of the theoretically calculated minimum flame kernel radius, the researcheres compared it with the RMaly's experimental values.

  • PDF

매연입자의 LII 신호를 이용한 충류확산화염 유동속도 측정 (Flow Velocity Measurement for Laminar Diffusion Flames Utilizing LII Signal from Soot Particles)

  • 이정수;남연우;이원남
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.157-163
    • /
    • 2006
  • A new technique utilizing LII signal for the measurement of flow velocities of laminar diffusion flames has been investigated. Soot particles in ethylene diffusion flames are heated by a modulated Ar-ion laser beam. LII signals and their phase angles are measured using a lock-in amplifier at the different flame heights and the axial flow velocity are obtained from the measured phase angle delay. The measured velocities are similar to those from LDV measurements under the same operating conditions. The effects of laser power, LII signal wavelength, and modulation frequency are not sensitive to the velocity measurement. However, the choice of an optical chopper blade type could affect the measurement result. The use of a 6/5 chopper blade showed the better result that is possibly due to the square shape of modulated laser beam. This study successfully demonstrated that axial flow velocities of laminar diffusion flames can be measured by a new technique utilizing LII signal, which does not need particle seeding unlikely to LDV or PIV techniques.

  • PDF

에틸렌 첨가에 따른 메탄 화염점파속도와 화학반응 메카니즘 비교 및 선형, 비선형 모델 평가 (Comparison of Laminar Burning Velocity of CH4/C2H4/Air Mixtures with Consideration of Chemical Mechanism)

  • 반규호;양재영;박정;권오붕;이대근;김승곤;곽영태;노동순;윤진한;길상인
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.165-168
    • /
    • 2015
  • To measure laminar burning velocity in methane/air/ethylene mixture flame, propagating centrally ignited spherical premixed flame to radial direction was measured by high-speed schlieren images with elevated pressure. In this study, The experimentally measured unstretched laminar burning velocities of methane was compared with GRI mech 3.0 to validate experimental data and choose the radius range, respectively. numerical prediction using the PREMIX code with GRI mech 3.0, USC mech II,, and Wang mech were evaluated through comparison with experimental burning velocity with consideration of extrapolation on linear/nonlinear model.

  • PDF

정상 및 미소중력장에서 프로판 층류 제트 삼지 화염의 전파속도에 관한 실험적 연구 (Normal and Micro Gravity Experiments on Propagation Speed of Tribrachial Flame of Propane in Laminar Jets)

  • 이종수;원상희;진성호;;;정석호
    • 한국연소학회지
    • /
    • 제7권3호
    • /
    • pp.47-54
    • /
    • 2002
  • The propagation speed of tribrachial flame in laminar propane jets has been investigated experimentally under normal and micro gravity conditions. The displacement speed was found to vary nonlinearly with axial distance because flow velocity along stoichiometric contour was comparable to the propagation speed of tribrachial flame for the present experiment. Approximate solutions for velocity and concentration accounting density difference and virtual origins have been used in determining the propagation speeds of tribrachial flame. Under micro gravity condition, the results showed that propagation speed of tribrachial flame is largely affected by the mixture fraction gradients, in agreement with previous studies. The limiting maximum value. of propagation speeds under micro gravity conditions are in good agreement with the theoretical prediction, that is, the ratio of maximum propagation speed to the stoichiometric laminar burning velocity is proportional to the square root of the density ratio of unburned to burnt mixture.

  • PDF

층류 프로판 동축류 제트에서 부상화염의 특성에 관한 실험적 연구 (Experimental Study on the Characteristics of Lifted Flames in Laminar Coflow Jets of Propane)

  • 이종수;원상희;진성호;정석호
    • 한국연소학회지
    • /
    • 제7권3호
    • /
    • pp.37-46
    • /
    • 2002
  • Characteristics of lifted flames in axisymmetric laminar coflow jets have been investigated experimentally. Approximate solutions for velocity and concentration accounting virtual origins have been proposed for coflow jets to analyze the behavior of liftoff height. From the measurement of Rayleigh intensity for probing the concentration field of propane, the validity of the approximate solutions was substantiated. From the images of OH PLIF and CH chemiluminescence and the Rayleigh concentration measurement, it has been shown that the positions of maximum luminosity in direct photography coincide with the tribrachial points, which were located along the stoichiometric contour. The liftoff height in coflow jets was found to increase highly nonlinearly with jet velocity and was sensitive to coflow velocity.

  • PDF

축대칭 층류부상화염에서 재부착현상에 관한 연구 (Study on Reattachment in Axisymmetric Laminar Lifted Flames)

  • 이종수;정석호
    • 한국연소학회지
    • /
    • 제5권2호
    • /
    • pp.69-78
    • /
    • 2000
  • Reattachment characteristics of laminar flames in partially premixed jets are studied for propane fuel mixed with air. As the flow rate decreases, liftoff height is decreased nonlinearly and the flame reattaches to a nozzle at a certain liftoff height. Using a jet theory by taking into account a virtual origin, it is predicted that flow velocity along a stoichiometric contour has a maximum value near nozzle. With this velocity characteristics, it is shown that reattachment mechanism can be explained by a balance between flame speed and flow velocity. Predicted displacement speeds at reattachment and liftoff agree qualitatively well with experimental findings.

  • PDF