• Title/Summary/Keyword: lamina yield

Search Result 12, Processing Time 0.021 seconds

Predicting Lamina Yield from Logs of Different Diameters for Cross Laminated Timber Production

  • Jeong, Gi Young;Lee, Jun-Jae;Yeo, Hwanmyeong;Lee, So Sun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.809-820
    • /
    • 2016
  • The goal of this study was to predict lamina yield from logs of different diameter for production of cross laminated timber. Log characteristics of red pine (Pinus densiflora) and Japanese cedar (Cryptomeria japonica), including diameter, length, volume, and defects were used for statistical and geometrical analyses, along with the lamina characteristics, including width, thickness, and defects. Based on the data obtained, the strong factors influencing the yield and grade of lamina from the two species were statistically evaluated. A geometrical approach was used for analysis of the yield from logs of given diameters. Statistical analysis showed that lamina yield was dependent on target lamina size but the grade of lamina was not related to any of the log characteristics. The suggested yield equations from the geometrical approach indicated an accuracy of less than 20% difference.

Optimized Lamina Size Maximizing Yield for Cross Laminated Timber Using Domestic Trees

  • Jeong, Gi-Young;Lee, Jun-Jae;Yeo, Hwan-Myeong;Hong, Jung-Pyo;Kim, Hyung-Kun;So, Won-Tek;Chung, Woo-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.141-148
    • /
    • 2013
  • The goal of this study was to find the optimum lamina size from red pine (Pinus densiflora) and Japanese cedar (Cryptomeria japonica) logs for the cross laminated timber (CLT) production. From visual inspection of the logs from two species, red pine log showed a larger knot and warp compared to the Japanese cedar. Different cross-sectional sizes of lamina ($110mm{\times}30mm$, $110mm{\times}40mm$, $110mm{\times}50mm$, $50mm{\times}30mm$, $30mm{\times}30mm$) from two species were analyzed for yield and grade. Regardless of the species, the optimized cross sectional size for maximizing the yield was $110mm{\times}30mm$. In grading for the different size laminas from Japanese cedar and red pine, a higher percentage of the first and second grade was found from the $110mm{\times}30mm$ lamina cut.

Visual Log Grading and Evaluation of Lamina Yield for Manufacturing Structural Glued Laminated Timber of Pitch Pine (리기다소나무 원목형질 조사 및 구조용집성재 제조 수율 평가)

  • Shim, Sangro;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.90-95
    • /
    • 2004
  • Pitch pine (Pinus rigida) has been planted in Korean forests for several decades, primarily for erosion control and use as a fuel supply. To enhance its value, and especially potential use as lamina for structural glued laminated timber (glulam), log quality and lumber yield of pitch pine were evaluated in this study. Trees from pure pitch pine stands with an average diameter at breast height of 32 cm were felled and bucked into 3.6m long 15 cm minimum butt-end diameter logs. Over 80% of the logs were classified to No.2 or No.3 visual grade group. Upon sawing total lumber yield was 55.2%, 39.9% for structural glulam lamina, 7.2% for louver, and 8.1% for miscellaneous use. The final lumber yield for manufacturing structural glulam, after cross-cutting to eliminate knots and finger jointing, was only 15.3%. To enhance this manufacturing yield requires that the rate of knot-included lumber used as lamina be raised. However arrangement of the knot-included lamina, whose mechanical properties need to be accurately evaluated, must be optimized to minimize any reduction to the structural glulam strength. The log quality and lumber yield of pitch pine evaluated in this study are expected to facilitate proper planning for wood product manufacture in the Korean lumbering and glulam industrial field, which has not previously dealt with this species.

Feasibility of Non-Korean Standard Glulam Using a Lower Grade Lamina of Japanese cedar for Structural Use

  • Oh, Jung-Kwon;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.85-93
    • /
    • 2010
  • Japanese cedar has low density and poor mechanical performance. Manufacturing glue-laminated timber (glulam) is the best way to compensate for its poor mechanical performance. The Korean Standard (KS) confines outermost lamina of glulam to higher grade than E8, but the yield of higher than grade E8 from logs is only 6.5%. Therefore, the aim of this study is to investigate the possibility of non-Korean-Standard glulam in structural applications. Allowable stresses determined by both hand-calculation and Monte-Carlo simulation show a higher allowable stress than that of the KS-standard glulam of 6S-22B. In the Korean Standard (KS), knot characteristics are not taken into account. Japanese cedar has relatively small knots. We believe that the small knots in Japanese cedar contribute to a higher allowable stress than the KS-standard glulam would predict. The species classification of KS is required to be further subdivided into sub-species groups based on knot characteristics.

Exclusion of Na+ and ClIons by the central parenchyma in leaf sheaths of rice and the involvement of lamina joint

  • Neang, Sarin;Kano-Nakata, Mana;Yamauchi, Akira;Itani, Tomio;Maekawa, Masahiko;Mitsuya, Shiro
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.237-237
    • /
    • 2017
  • Rice is highly sensitive to salt stress especially in its early growth stage, which thus is one of the major constraints in rice production. In rice plants, salt sensitivity is associated with the accumulation of $Na^+$ in the shoots, especially in the photosynthetic tissues. High salt concentrations in soil cause high $Na^+$ and $Cl^-$ transport to the shoot and preferential accumulation of those ions in older leaves, which decreases $K^+$ in the shoot, photosynthetic activity and grain yield. Salt exclusion capacity at the leaf sheath is therefore considered to be one of the main mechanisms of salt tolerance. In addition, it is suspected that the lamina joint might be involved in the salt transport from leaf sheath to leaf blade. This research aims to determine if leaf sheaths of rice exclude a large amount of $Na^+$ only or other ions such as $K^+$, $Ca^{2+}$, $Mg^{2+}$, and $Cl^-$ as well, to identify tissues in the leaf sheath, which accumulate $Na^+$, and to examine if the lamina joint is involved in the salt exclusion by the leaf sheath. The rice seedlings of salt tolerant genotype FL478 and salt sensitive genotype IR29 were independently treated with NaCl, KCl, $MgCl_2$ and $CaCl_2$, and Taichung 65 and its near-isogenic liguleless line (T65lg) were treated with NaCl. Then, the content of $Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$, and $Cl^-$ ions and their specific location were determined using Atomic Absorption Spectrometer, Ion Chromatograph, and Energy Dispersive X-ray Spectroscopy. Results showed that leaf sheaths of FL478 and IR29 accumulated a large amount of $Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$, and $Cl^-$ ons, and thus excluded them from leaf blades when treated with high concentration of each salt. When treated with NaCl, the highest $Na^+$ concentration was found in the basal part of leaf sheaths of both cultivars. Moreover, energy-dispersive X-ray spectroscopy revealed that the central parenchyma cells of the leaf sheath were the site where most Na, Cl, and K were retained under salinity in the salt tolerant genotype FL478. Also, the concentration of $Na^+$, $K^+$ and $Cl^-$ ions in leaf sheaths and leaf blades was comparable between T65 and T65lg, indicating that the lamina joint may not be involved in the exclusion of $Na^+$, $Cl^-$ and $K^+$ by the leaf sheath from the leaf blade under salinity. Therefore, we conclude that the central parenchyma cells of basal part of leaf sheath are the site that plays a physiological role to exclude $Na^+$ in the shoots of rice without the involvement of the lamina joint.

  • PDF

Investigation of Synthesis Yield and Diameter Distribution of Single-Walled Carbon Nanotubes Grown at Different Positions in a Horizontal CVD Chamber (수평형 CVD 장치에서 기판 위치에 따른 단일벽 탄소나노튜브의 합성 수율 및 직경 분포 고찰)

  • Jo, Sung-Il;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.357-363
    • /
    • 2019
  • We investigated a synthesis yield and diameter distribution of single-walled carbon nanotubes (SWNTs) with respect to the growth position in a horizontal chemical vapor deposition (CVD) chamber. Thin films and line-patterned Fe films (0.1 nm thickness) were prepared onto ST-cut quartz substrates as catalyst to compare the growth behavior. The line-patterned samples showed higher growth density and parallel alignment than those of the thin film catalyst samples. In addition, line density of the aligned SWNTs at central region of the chamber was 7.7 tubes/㎛ and increased to 13.9 tubes/㎛ at rear region of the CVD chamber. We expect that the enhanced amount of thermally decomposed feedstock gas may contribute to the growth yield enhancement at the rear region. In addition, the lamina flow in the chamber also contribute to the perfect alignment of the SWNTs based on the value of gas velocity, Reynold number, and Knudsen coefficient we employed.

Estimate of Bolt Connection Strength of Reinforced Glulam using Glass Fiber (유리섬유 보강집성재 볼트 접합부 전단내력 예측)

  • Kim, Keon-ho;Hong, Soon-il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • The yield shear strength of bolt connection in glass fiber reinforced glulam was predicted using a design-based equation, and was compared to the empirical yield shear strength. For the predicted equation, the mechanical properties of member (the elastic modulus, Poisson's ratio, shear modulus) was tested. The fracture toughness factor ($K_{ft}$) of glass fiber reinforced glulam was reflected to the revision of the design equation of bolted connection. The compressive strength properties to grain direction was influenced by annual ring angle and width of lamina. Compared with the revised yield shear strength of reinforced glulam, it was tended to be similar to the empirical yield shear strength on the diameter of bolt and the reinforcements. The revised yield shear strength from proposed formula of KBC was most appropriately matched in the bolt connection of the glass fiber reinforced glulam.

Effects of Liming and Nitrogen Sources on the Yield and Quality of Burley Tobacco II. Effects of Chemical Constituents of tobacco leaves (석회의 질소원이 버어리종 담배의 수량과 품질에 미치는 영향 II. 잎담배의 화학성분에 미치는 영향)

  • 김상범;한철수;김용규
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.4
    • /
    • pp.379-385
    • /
    • 1987
  • A field experiment was conducted to find out the effects of liming (soil pH) and sources of N on the chemical constituents of soil and leaf lamina of burley tobacco. Treatments consisted of liming (nonliming, liming to soil pH 5.5 and 6.5) as the main plot and N sources[compound fertilizer of containing 3.9% $NH_4-N$ and 6.1% $NH_2-N,\;NaNO_3,\;(NH_2)_2CO\;and\;(NH_4)_2SO_4$]as the sub-plot. The soil pH was high in $NaNO_2$ plot, while low in $(NH_4)_2SO_4$. But the differences of Ca concentration in top soil among N sources were not detected. The $NO_3-N$ concentration in top soil was high in high limed and $NaNO_3$ plot. The $NO_3-N$ content of leaf (lamina) at 75 days after transplanting was high in $NaNO_3$ plot and CaO con-tent of leaf at 45 days after transplanting was high in high limed plot. But neither liming nor N source had effect on the contents of total nitrogen, $P_2-O_{5}\;and\;K_2O$ of leaf during growing season. There was no significant differences in total alkaloid and total nitrogen contents of cured leaf (lamina) to liming and N source. But when the source of N was $NaNO_3$, the content of total alkaloid was increased by adding lime. When the source of N was $(NH_4$)_2SO_4$, the content of $K_2O$ in cured leaf was high while CaO was low. But neither liming nor N source had effect on the contents of $P_2-O_{5}$ and MgO in cured leaf.

  • PDF

Pooling-Across-Environments Method for the Generation of Composite-Material Allowables (환경조건간 합동을 이용한 복합재료 허용치 생성 기법)

  • Rhee, Seung Yun
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.63-69
    • /
    • 2016
  • The properties of composite materials, when compared to those of metallic materials, are highly variable due to many factors including the batch-to-batch variability of raw materials, the prepreg manufacturing process, material handling, part-fabrication techniques, ply-stacking sequences, environmental conditions, and test procedures. It is therefore necessary to apply reliable statistical-analysis techniques to obtain the design allowables of composite materials. A new composite-material qualification process has been developed by the Advanced General Aviation Transport Experiments (AGATE) consortium to yield the lamina-design allowables of composite materials according to standardized coupon-level tests and statistical techniques; moreover, the generated allowables database can be shared among multiple users without a repeating of the full qualification procedure by each user. In 2005, NASA established the National Center for Advanced Materials Performance (NCAMP) with the purpose of refining and enhancing the AGATE process to a self-sustaining level to serve the entire aerospace industry. In this paper, the statistical techniques and procedures for the generation of the allowables of aerospace composite materials will be discussed with a focus on the pooling-across-environments method.

Effect of Glass Fiber-Reinforced Connection on the Horizontal Shear Strength of CLT Walls

  • JUNG, Hongju;SONG, Yojin;HONG, Soonil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.685-695
    • /
    • 2020
  • The connection performance between cross-laminated timber (CLT) walls and support has the greatest effect on the horizontal shear strength. In this study, the horizontal shear performance of CLT walls with reinforced connection systems was evaluated. The reinforcements of metal bracket connections in the CLT connection system was made by attaching glass fiber-based reinforcement to the connection zone of a CLT core lamina. Three types of glass fiber-based reinforcement were used: glass fiber sheet (GS), glass fiber cloth (GT) and fiber cloth plastic (GTS). The horizontal shear strength of the fabricated wall specimens was compared and evaluated through monotonic and cyclic tests. The test results showed that the resistance performance of the reinforced CLT walls to a horizontal load based on a monotonic test did not improve significantly. The residual and yield strengths under the cyclic loading test were 38 and 18% higher, respectively, while the ductility ratio was 38% higher than that of the unreinforced CLT wall. The glass fiber-based reinforcement of the CLT connection showed the possibility of improving the horizontal shear strength performance under a cyclic load, and presented the research direction for the application of real-scale CLT walls.