• 제목/요약/키워드: lamellar ${\alpha}$

검색결과 48건 처리시간 0.025초

Mg-xSn(x = 1, 3, 5, 7, 9 wt.%) 합금의 미세조직 및 부식특성 (Microstructure and Corrosion Behavior of Mg-xSn (x = 1, 3, 5, 7, 9 wt.%) Alloys)

  • 강용묵;김상현;조수미;박경철;김병호;박익민;박용호
    • 한국주조공학회지
    • /
    • 제31권6호
    • /
    • pp.362-365
    • /
    • 2011
  • In the present work, the corrosion properties of Mg-xSn (x = 1, 3, 5, 7 and 9 wt.%) alloys have been investigated. Potentiodynamic polarization and immersion tests were carried out in 3.5% NaCl solution of pH 7.2 at room temperature to measure the corrosion properties of Mg-xSn (x = 1, 3, 5, 7 and 9 wt.%) alloys. With increase of the Sn contents, the volume fraction of the $Mg_2Sn$ phase was increased. The corrosion rate of Mg-xSn alloys was increased up to 7 wt.%Sn and decreased above 9 wt.%Sn. Initiation of galvanic site during immersion mainly occurred at Mg/$Mg_2Sn$ interface and propagation went into ${\alpha}$-Mg. For this reason, corrosion properties of Mg-xSn (added from 1 wt.%Sn to 7 wt.%Sn alloys) alloys are decreased because the galvanic site was increased with increasing Sn addition. In Mg-9wt.%Sn alloy, however, the corrosion site were changed from Mg/$Mg_2Sn$ interface to ${\alpha}$-Mg/$M_2Sng$ interface in lamellar structure. Preferentially corrosion of ${\alpha}$-Mg/$M_2Sn$ interface in lamellar structure impeded corrosion propagation went into ${\alpha}$-Mg.

Age-Hardening Behavior and Structural Changes in a Commercial Dental Au-Ag-Cu-Pd Alloy

  • Kim, Hyung-Il;Park, Seok-Kyu
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권4호
    • /
    • pp.389-394
    • /
    • 1994
  • The age-hardening behavior and the structural changes in a commercial dental Au-Ag-Cu-Pd alloy were investigated by means of hardness test, optical and scanning electron microscopic observation, energy dispersive spectroscopy and X-ray diffraction study. The drastic reduction in hardness by prolonged aging occurred after a rapid increase in hardness at the initial stage by the isothermal aging at $350^{\circ}C$. This softening was due to the broad precipitates formation of the lamellar structure which was composed of the f.c.t. AuCu I ordered f.c.t. phase containing Pd and the f.c.c. Ag-rich $\alpha$1 solid solution f.c.c.phase containing Au.

  • PDF

Effect of Sr Substitution for RE on Microstructure and Tensile Properties in Mg-Al-RE Casting Alloys

  • Jun, Joong-Hwan
    • 한국주조공학회지
    • /
    • 제31권5호
    • /
    • pp.284-287
    • /
    • 2011
  • 본 연구는 Mg-Al 합금에 첨가된 희토류 금속(rare earth metal, RE)과 스트론튬(Sr)이 상온 및 고온 기계적 특성에 미치는 영향을 비교하고, 그 결과를 미세조직의 변화와 연관지어 분석하는 것이 목적이다. 이를 위해 4종의 Mg-6%Al-(3-X)%REX% Sr 합금(X = 0~3)을 마련하여 RE를 Sr으로 대체하면서 상온 및 고온 인장 특성, 크립 저항성을 평가하였다. RE가 Sr으로 대체됨에 따라, 층상구조의(${\alpha}$ + $Al_4Sr$)상이 ${\alpha}$ 덴드라이트 사이에 생성되면서 침상의 $Al_4RE$상이 점차 소멸하였으며 Mg-6%Al-3%Sr 합금에서는(${\alpha}$ + $Al_4Sr$과 블록형태의 Mg-Al-Sr상이 관찰되었다. Sr 함량이 증가할수록 항복강도와 크립저항성은 지속적으로 향상되는 경향을 나타내었다.

기계적 분쇄화 및 스파크 플라즈마 소결에 의한 TiAl 합금의 제조 (Fabrication of TiAl Alloys by Mechanical Milling and Spark Plasma Sintering)

  • 김민수;김준식;황승준;홍영환;오명훈
    • 열처리공학회지
    • /
    • 제17권1호
    • /
    • pp.17-22
    • /
    • 2004
  • In the present study, newly developed spark plasma sintering(SPS) technique was introduced to refine the grain size of ${\gamma}$-based TiAl intermetallic compounds. Ti-46Al-1.5Mo and Ti-46Al-1.5Mo-0.2C(at%) prealloyed powders were produced by mechanical milling(MM) in high-energy attritor. The mechanically milled powders were characterized by XRD and SEM for the microstructural evolution as a function of milling time. And then, the MMed powders were sintered by both spark plasma sintering and hot pressing in vacuum (HP). After the sintering process, MM-SPSed specimens were heat-treated in a vacuum furnace (SPS-VHT) and in the SPS equipment(MM-SPS) for microstructural control. It was found from microstrutural observation that the microstructure consisting of equiaxed ${\gamma}$-TiAl with a few hundred nanometer in average size and ${\alpha}_2-Ti_3Al$ particles were formed after both sintering processes. It was also revealed from hardness test and three-point bending test that the effect of grain refinement on the hardness and bending strength is much higher than that of carbon addition. The fully lamellar microstructures, which is less than $80{\mu}m$ in average grain size was obtained by SPS-VHT process, and the fully lamellar microstructure which is less than $100{\mu}m$ in average grain size was obtained by MM-SPS for a relatively shorter heat-treatment time.

Ti-6Al-4V합금의 비틀림 및 압축변형에 따른 고온변형거동 고찰 (Investigation of High Temperature Deformation Behavior in Compression and Torsion of Ti-6Al-4V Alloy)

  • 염종택;정은정;김정한;홍재근;박노광;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.435-438
    • /
    • 2008
  • High temperature deformation of Ti-6Al-4V alloy with a lamellar colony microstructure was investigated by hot compression and torsion tests. The torsion and compression tests were carried out under a wide range of temperatures and strain rates with true strain up to 2 and 0.7, respectively. The processing maps were generated on the basis of compression and torsion test data and using the principles of dynamic materials modeling (DMM). The shapes of the strain-stress curves in alpha-beta region and processing maps obtained on the two different tests have been compared with a view to evaluate the effect of the microstructure evolution on the flow softening behavior of Ti-6Al-4V alloy with a lamellar colony microstructure.

  • PDF

주조 및 불연속 석출물 미세조직을 가지는 Mg-Al 합금의 진동감쇠능 (Damping Capacities of Mg-Al alloy with As-Cast and Discontinuous Precipitates Microstructures)

  • 전중환
    • 열처리공학회지
    • /
    • 제34권5호
    • /
    • pp.218-225
    • /
    • 2021
  • In this study, damping capacities were comparatively investigated for Mg-9%Al alloy with as-cast (AC) and fully discontinuous precipitates (DPs) microstructures, respectively. The DPs microstructure was obtained by solution treatment at 678 K for 24 h, followed by furnace cooling to RT. The AC microstructure was typically characterized by partially divorced eutectic β(Mg17Al12) phase particles distributed along the α-(Mg) matrix cell boundaries. The DPs microstructure showed lamellar morphology consisting of α and β thin layers with various interlamellar spacings. The DPs microstructure had better damping capacity than the AC microstructure in the strain-amplitude independent region, while in the strain-amplitude dependent region, the damping behavior was reversed. In view of the microstructural features of AC and DPs, the lower concentration of Al in the α-(Mg) phase for the DPs microstructure and the lower β phase number density for the AC microstructure would be responsible for the higher damping capacities in the strain-amplitude independent and strain-amplitude dependent regions, respectively.

Mg-Al 합금에서 불연속 석출물의 부피 분율에 의한 경도 및 열전도도의 변화 (Changes in Hardness and Thermal Conductivity with Volume Fraction of Discontinuous Precipitates in Mg-Al Alloy)

  • 전중환
    • 열처리공학회지
    • /
    • 제34권6호
    • /
    • pp.302-308
    • /
    • 2021
  • The aim of this study was to investigate the dependence of the hardness and thermal conductivity on the volume fraction of discontinuous precipitates (DPs) in the Mg-9.3%Al alloy with (α-(Mg)+DPs) dual phase structure. In order to obtain various DPs volume fractions, the alloy was solution-treated at 688 K for 24 h and then aged at 418 K for up to 144 h. The volume fraction of DPs increased from 0% to 63% with an increase in the aging time up to 72 h, over which, continuous precipitation was observed within the α-(Mg) grains. It is noticeable that the hardness and thermal conductivity of the alloy increased linearly with the volume fraction of DPs. The improved hardness and thermal conductivity with respect to volume fraction of DPs are closely associated with the higher hardness of the DPs with fine (α+β) lamellar structure and the lower Al concentration in the α phase layer of the DPs, respectively.

일방향응고된 $Bi_{2}Te_{3}-PbBi_{4}Te_{7}$ 공정합금의 열전특성 (Thermoelectric properties of unidirectionally solidified $Bi_{2}Te_{3}-PbBi_{4}Te_{7}$ eutectic alloys)

  • 박창근;민병규;이동희
    • 한국재료학회지
    • /
    • 제5권2호
    • /
    • pp.251-258
    • /
    • 1995
  • $Bi_{2}Te_{3}$와 PbTe의 혼합물에서 $Bi_{2}Te_{3}-PbBi_{4}Te_{7}$의 공정조직이 형성됨을 이용, 제2상의 미세조직 제어로 열전도도의 감소에 따른 성능지수 향상을 목적하여 여러 조건에서 제조된 n-type(Bi, Pb)-Te계 공정조성 일방향 응고재의 열전특성을 조사하였다. 일방향응고시 공정상 PbBi_{4}Te_{7}$$Bi_{2}Te_{3}$의 벽개면(0001)을 따라 lamellar 형태로 성장하였으며, 성장속도가 1.4 \times 10^{-4}$cm/sec에서 $8.3 \times 10^{-4}$cm/sec로 증가됨에 따라 4PbBi_[4]Te_{7}$의 상간격은 10.4 $\mu \textrm{m}$에서 3.2$\mu \textrm{m}$로 감소되었다. Seeback계수는 성장방향 및 성장속도와 온도구배에는 관계없이 약 $\mid$$\alpha$$\mid$=29 $\mu$ V/K일정하였다. 전기전도도는 성장속도에 따라 약간 감소하는 경향을 보였고 성장방향에 평행한 경우가 수직한 경우보다 약 3배 정도 컸다. 성능지수는 성장방향과 성장속도 및 온도구배에 따라 약간씩 변화를 보였다. 수직한 경우가 평행한 경우에 비해 상대적으로 증가하는 경향을 나타내었는데 이는 lamellar 간격이 줄어듦에 따른 열전도도의 감속에서 비롯된 것으로 분석되었다.

  • PDF

Microstructure-Properties Relationships of Ti-6Al-4V Parts Fabricated by Selective Laser Melting

  • Mezzetta, Justin;Choi, Joon-Phil;Milligan, Jason;Danovitch, Jason;Chekir, Nejib;Bois-Brochu, Alexandre;Zhao, Yaoyao Fiona;Brochu, Mathieu
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • 제5권5호
    • /
    • pp.605-612
    • /
    • 2018
  • This work investigates the relationships between the static mechanical properties of Ti-6Al-4V manufactured through selective laser melting (SLM) and post-process heat treatments, namely stress relieve, annealing and hot isostatic pressing (HIP). In particular, Ti-6Al-4V parts were fabricated in three different build orientations of X, Z, and $45^{\circ}$ to investigate the multi-directional mechanical properties. The results showed that fully densified Ti-6Al-4V parts with densities of up to 99.5% were obtained with optimized SLM parameters. The microstructure of stress relieved and mill annealed samples was dominated by fine ${\alpha}^{\prime}$ martensitic needles. After HIP treatment, the martensite structure was fully transformed into ${\alpha}$ and ${\beta}$ phases (${\alpha}+{\beta}$ lamellar). Within the realm of tensile properties, the yield and ultimate strength values were found statistically similar with respect to the built orientation for a given heat treatment. However, the ductility was found orientation dependent for the HIP samples, where a lower value was observed for samples built in the X direction.

금속고화체용 STS304-Zr 합금의 미세조직과 파괴거동에 미치는 열처리의 영향 (Effect of Heat Treatment on Microstructure and Fracture Behavior of STS304-Zr Alloys for Metal Waste Forms)

  • 김종우;장선아;한승엽;박환서;이정훈;이성학;권용재;이정구;신상용
    • 한국재료학회지
    • /
    • 제28권3호
    • /
    • pp.174-181
    • /
    • 2018
  • Three kinds of STS304-Zr alloys were fabricated by varying the Zr content, and their microstructure and fracture properties were analyzed. Moreover, we performed heat treatment to improve their properties and studied their microstructure and fracture properties. The microstructure of the STS304-Zr alloys before and after the heat treatment process consisted of ${\alpha}-Fe$ and intermetallics: Zr(Cr, Ni, Fe)2 and Zr6Fe23. The volume fraction of the intermetallics increased with an increasing Zr content. The 11Zr specimen exhibited the lowest hardness and fine dimples and cleavage facets in a fractured surface. The 15Zr specimen had high hardness and fine cleavage facets. The 19Zr specimen had the highest hardness and large cleavage facets. After the heat treatment process, the intermetallics were spheroidized and their volume fraction increased. In addition, the specimens after the heat treatment process, the Laves phase (Zr(Cr, Ni, Fe) 2) decreased, the Zr6Fe23 phase increased and the Ni concentration in the intermetallics decreased. The hardness of all the specimens after the heat treatment process decreased because of the dislocations and residual stresses in ${\alpha}-Fe$, and the fine lamellar shaped eutectic microstructures changed into large ${\alpha}-Fe$ and spheroidized intermetallics. The cleavage facet size increased because of the decomposition of the fine lamellar-shaped eutectic microstructures and the increase in spheroidized intermetallics.