• 제목/요약/키워드: laden-particle

검색결과 51건 처리시간 0.023초

실린더의 회전이 원형 실린더 주위의 입자 부유 유동 및 입자 부착에 미치는 영향 (Effects of Cylinder Rotation on Particle Laden Flow and Particle Deposition on a Rotating Circular Cylinder)

  • 이승우;김동주
    • 대한기계학회논문집B
    • /
    • 제41권4호
    • /
    • pp.239-248
    • /
    • 2017
  • 원형 실린더 주위의 유동에 부유된 입자가 실린더 근처에서 분산되거나 실린더에 부착되는 특성을 이해하는 것이 중요하다. 본 연구에서는 입자의 부착을 조절하는 방안으로 실린더의 회전을 고려해 보았고, 실린더의 회전 속도 및 입자의 Stokes 수가 실린더 주위의 유동과 입자의 분산 및 부착 특성에 미치는 영향을 수치해석적으로 연구하였다. 해석 결과 4보다 작은 Stokes 수에서는 회전속도가 증가함에 따라 부착효율이 크게 감소하였고, 4보다 큰 Stokes 수에서는 회전속도가 증가함에 따라 부착효율이 다소 증가하였다. 한편, 회전속도가 일정한 경우에는 Stokes 수가 증가함에 따라 입자의 부착효율이 증가하고, 입자의 부착 위치도 넓어졌다.

원형 실린더 주위의 고온 유동에서 입자의 부착 해석 (Simulation of the Particle Deposition on a Circular Cylinder in High-Temperature Particle-Laden Flow)

  • 정석민;김동주
    • 한국기계가공학회지
    • /
    • 제18권2호
    • /
    • pp.73-81
    • /
    • 2019
  • Numerical simulations are performed for the thermal fluid flow around a circular cylinder, and the particle trajectories are calculated to investigate the particle motions and deposition characteristics. We aim to understand the effects of three important parameters (particle Stokes number, temperature difference in the flow and on the cylinder surface, and thermal conductivity ratio between the fluid and the particles) on the deposition efficiency. The results show that the thermophorectic effect is insignificant for particles with large Stokes numbers, but it affects particles with small Stokes numbers. The deposition efficiency increases with the increase in temperature difference between the flow and the cylinder or the decrease in ratio of thermal conductivity of the particles to the fluid. When thermophoresis becomes significant, the particles are deposited even on the back side of the cylinder.

고체입자가 부상된 균질 난류 전단유동의 2차-모멘트 모형화 (Second-Moment Closure Modelling of Particle-Laden Homogeneous Turbulent Shear Flows)

  • 신종근;서정식;한성호;최영돈
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.29-39
    • /
    • 2007
  • A second-moment closure is applied to the prediction of a homogeneous turbulent shear flow laden with mono-size particles. The closure is curried out based on a 'two-fluid' methodology in which both carrier and dispersed phases are considered in the Eulerian frame. To reduce the number of coupled differential equations to be solved, Reynolds stress transport equations and algebraic stress models are judiciously combined to obtain the Reynolds stress of carrier and dispersed phases in the mean momentum equation. That is, the Reynolds stress components for carrier and dispersed phases are solved by modelled transport equations, but the fluid-particle velocity covariance tensors are treated by the algebraic models. The present predictions for all the components of Reynolds stresses are compared to the DNS data. Reasonable agreements are observed in all the components, and the effects of the coupling of carrier and dispersed phases are properly captured in every aspects.

DNS of Interaction Phenomena in Particle-Laden Turbulence

  • Kajishima T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.9-11
    • /
    • 2003
  • A homogeneous flow field including more than 2000 spherical particles was directly simulated. Particles are settling by gravity with the Reynolds number ranging from 50 to 300, based on diameter and slip velocity. Particular attention was focused on the distribution of particles. The Reynolds-number dependence, influences of particle rotation and loading ratio, and the dynamics of particle clusters are discussed. In the higher Reynolds number case, the wake attraction causes particle clusters and the average drag coefficient decreases significantly. Non-rotating particles maintain cluster structure and rotating ones moves randomly in the horizontal direction. It is because of the difference in the direction of the lift force.

  • PDF

포크너-스캔 경계층유동에서의 다분산 입자부착에 대한 연구 (Deposition of Polydisperse Particles in a Falkner-Skan Wedge Flow)

  • 조장호;황정호;최만수
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2342-2352
    • /
    • 1995
  • Deposition of flame-synthesized silica particles onto a target is utilized in optical fiber preform fabrication processes. The particles are convected and deposited onto the target. Falkner-Skan wedge flow was chosen as the particle laden flow. Typically the particles are polydisperse in size and follow a lognormal size distribution. Brownian diffusion, thermophoresis, and coagulation of the particles were considered and effects of these phenomena on particle deposition were studied. A moment model was developed in order to predict the particle number density and the particle size distribution simultaneously. Particle deposition with various wedge configurations was examined for conditions selected for a typical VAD process. When coagulation was considered, mean particle size and its standard deviation increased and particle number density decreased, compared to the case without coagulation. These results proved the fact that coagulation effect expands particle size distribution. The results were discussed with characteristics of thermal and diffusion boundary layers. As the boundary layers grow in thickness, overall temperature and concentration gradients decrease, resulting in decrease of deposition rate and increase of particle residence time in the flow and thus coagulation effect.

분체 이송관내 압력 조절을 위한 오리피스 주위에서의 입자 유동 및 마모 해석 (Particle Laden Flows Around Orifice Plates for Pressure Control in Pulverized Coal Pipe Lines)

  • 조형희;이재근;박호동;서태원
    • 대한기계학회논문집B
    • /
    • 제22권11호
    • /
    • pp.1499-1508
    • /
    • 1998
  • A numerical study is performed to investigate pressure drops, particle trajectories and erosion around orifice plates in pulverized coal pipe lines. Particle impaction rates change significantly with orifice shapes and Stokes numbers. At Reynolds number of $5{\times}10^5$, the pulverized coal flows well with streamlines and do not collide at the orifice plates at small sizes (${\sim}20{\mu}m$). However, the large particles (over $70{\mu}m$) impact on the front face of the orifice and erode the orifice surface. The pressure loss coefficients around the erode orifice are largely different from the designed original orifice.

발전소 굴뚝에서의 입자 분산에 대한 수치해석 (Numerical study of particle dispersion from a power plant chimney)

  • 심정보;유동현
    • 한국입자에어로졸학회지
    • /
    • 제13권4호
    • /
    • pp.173-182
    • /
    • 2017
  • An Eulerian-Lagrangin approach is used to compute particle dispersion from a power plant chimney. For air flow, three-dimensional incompressible filtered Navier-Stokes equations are solved with a subgrid-scale model by integrating the Newton's equation, while the dispersed phase is solved in a Lagrangian framework. The velocity ratios between crossflow and a jet of 0.455 and 0.727 are considered. Flow fields and particle distribution of both cases are evaluated and compared. When the velocity ratio is 0.455, it demonstrates a Kelvin-Helmholtz vortex structure above the chimney caused by the interaction between crossflow and a jet, whereas the other case shows flow structures at the top of the chimney collapsed by fast crossflow. Also, complex wake structures cause different particle distributions behind the chimney. The case with the velocity ratio of 0.727 demonstrates strong particle concentration at the vortical region, whereas the case with the velocity ratio of 0.455 shows more dispersive particle distribution. The simulation result shows similar tendency to the experimental result.

벽면난류에 대한 미세와 구조와 입자분산 (Particle Dispersion and Fine Scale Eddies in Wall Turbulence)

  • 강신정;타나하시 마모루;미야우치 토시오
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1101-1106
    • /
    • 2006
  • To investigate a relation between fine scale eddies and particle dispersion in a near-wall turbulence, direct numerical simulations of turbulent channel flow laden particle are performed for $Re_{\tau}$=180. The motions of 0,8 million particles are calculated for several particle response times ($t_p$) which is the particle response time based on stokes’ friction law. The number density of particles has a tendency to increase with approaching the near-wall regions ($y^+$<20) except for cases of very small and large particle response times (i.e. $t_p$=0.02 and 15). Near the wall, the behavior and distribution of particles are deeply associated with the fine scale eddies, and are dependent on particle response times and a distance from the wall. The Stokes number that causes preferential distribution in turbulence is changed by a distance from the wall. The influential Stokes number based on the Burgers' vortex model is derived by using the time scale of the fine scale eddies. The influential Stokes number is also dependent on a distance from the wall and shows large value in the buffer layer.

터빈익렬 유로에서 2상 유동에 따른 삭마량 예측 (Prediction of Erosion Rate in Passages of a Turbine Cascade with Two-Phase flow)

  • 유만선;김완식;조형희
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.301-308
    • /
    • 1999
  • The present study investigates numerically particle laden flow through compressor cascades and a rocket nozzle. Engines are affected by various particles which are suspending in the atmosphere. Especially in the case of aircraft aviating in volcanic, industrial and desert region including many particles, each components of engine system are damaged severely. That damage modes are erosion of compressor blading and rotor path components, partial or total blockage of cooling passage and engine control system degradation. Numerical prediction and experimental data, erosion rates are predicted for two materials - ceramic, soft metal - on compressor blade surface. Aluminum oxide ($Al_2O_3$) Particles included in solid rocket propelant make ablative the rocket motor nozzle and imped the expansion processes of propulsion. By the definition of particle deposition efficiency, characteristics of particles impaction are considered quantitatively Stoke number is defined over the various particle sizes and particle trajectories are treated by Lagrangian approach. Particle stability is considered by definition of Weber number in rocket nozzle and particle breakup and evaporation is simulated in a rocket nozzle.

  • PDF

이산요소법을 이용한 보행류 해석 프로그램 개발 (Development of an Analysis Program for Pedestrian Flow based on the Discrete Element Method)

  • 남성원;권혁빈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3197-3202
    • /
    • 2007
  • An analysis program for pedestrian flow has been developed to investigate the flow patterns of passenger in railway stations. Analysis algorithms for pedestrian flow based on DEM(Discrete Element Method) are newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. By using the developed program, we compared the simulation results of the effects of the location and size of exit and elapsed time.

  • PDF