• Title/Summary/Keyword: lactic-fermentation

Search Result 1,693, Processing Time 0.023 seconds

The Mixed Effect of Salvia miltiorrhiza and Glycyrrhiza uralensis on the Shelf-life of Kimchi (김치숙성 중에 미치는 단삼과 감초의 혼합효과)

  • 이신호;조옥기;박나영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.5
    • /
    • pp.858-863
    • /
    • 1998
  • The Mixed effect of Salvia miltiorrhiza and Glycyrrhiza uralensis(SG) on kimchi fermentation was investigated by measuring changes of physicochemical, icrobiological and sensory qualities of kimchi during fermentation. The pH of SG-added kimchi was a little higher than that of control during the fermentation. Titratable acidity, viable cell of total bacteria and lactic acid bacteria in mixed medicinal herbs(SG) added kimchi were changed more slowly than those in control. The inhibitory effect of the mixture on kimchi fermentation was increased as the concentration of the mixture was increased from 1% to 5%. Total bacteria and lactic acid bacteria of 3% and 5% SG-added kimchi reduced to 1.3~2.9 and 1.2~4.0 log10 cycle after 15 days fermentatin compared to control. The changes in texture of SG-added kimchi was a higher and sour taste of SG-containing kimchi excepts of 1% SG-added kimchi was more weak than that of control. Sensory score of flavor and overall acceptability did not show any significant difference between SG-added kimchi and control during fermentation. But SG-added kimchi decreased its sensory quality by 5% the other kimch.

  • PDF

Diversity and Role of Yeast on Kimchi Fermentation (김치 발효에 관여하는 효모의 다양성 및 역할)

  • Kang, Seong Eun;Kim, Mi Ju;Kim, Tae Woon
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.2
    • /
    • pp.201-207
    • /
    • 2019
  • This review summarizes the studies on a wide variety of yeast found in kimchi and the effects of yeast on kimchi fermentation, and discusses the direction for further research. Yeast belongs to the genera Trichosporon, Saccharomyces, Sporisorium, Pichia, Lodderomyces, Kluyveromyces, Candida, Debaryomyces, Geotrichum, Kazachstania, Brassica, Yarrowia, Hanseniaspora, Brettanomyces, Citeromyces, Rhodotorula, and Torulopsis have been identified using culture-dependent methods and metagenomics analysis. The application of yeast as a starter into kimchi has resulted in an extension of shelf life and improvement of sensory characteristics due to a decrease in the amount of lactic acid. On the other hand, some yeast cause kimchi spoilage, which typically appears as an off-odor, texture-softening, and white-colony or white-film formation on the surface of kimchi. In contrast to lactic acid bacteria, there are limited reports on yeast isolated from kimchi. In addition, it is unclear how yeast affects the fermentation of kimchi and the mechanism by which white colony forming yeast predominate in the later stage of kimchi fermentation. Therefore, more research will be needed to solve these issues.

Improvement in the Quality of Kimchi by Fermentation with Leuconostoc mesenteroides ATCC 8293 as Starter Culture

  • Li, Ling;Yan, Yu;Ding, Weiqi;Gong, Jinyan;Xiao, Gongnian
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.533-538
    • /
    • 2020
  • To investigate the effect of the predominant microorganisms in kimchi on quality, Leuconostoc mesenteroides ATCC 8293 was used as starter culture during kimchi fermentation. A higher number of lactic acid bacteria and lower initial pH were observed in starter kimchi than in non-starter kimchi in the early stage of fermentation. The concentrations of the main metabolite, lactic acid, were 69.88 mM and 83.85 mM for the non-starter and starter fermented kimchi, respectively. The free sugar concentrations of starter kimchi decreased earlier than those of non-starter kimchi, and the levels of free sugars in both kimchi samples decreased during fermentation. At the end of fermentation, non-starter kimchi had a softer texture than starter kimchi, suggesting that L. mesenteroides is useful in extending shelf life. Sensory evaluation showed that starter kimchi had higher sourness and lower bitterness and astringency values, resulting in high sensory quality. These results suggest that the L. mesenteroides ATCC 8293 strain could be a potential starter culture in kimchi.

Fermentation properties of rice-added yogurt using two types of blended lactic acid bacteria as a starter

  • Park, Yun Hwan;Choi, Jung Seok
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.273-281
    • /
    • 2021
  • These days, different types of yogurt are being manufactured by adding various starters and functional ingredients for health. The purpose of this study was to prepare yogurt added with rice followed by fermentation with two types of starters and to examine its attributes. Ten percent of skim milk powder and 0, 2.5, 5.0, 7.5, or 10% rice were mixed in water (w/v) and then inoculated with two types of starter: 1) Type A, Streptococcus thermophiles and Lactobacillus delbrueckii ssp. bulgaricus as starter; and 2) Type B, Streptococcus thermophiles, Lactobacillus acidophilus, and Bifidobacteium animalis ssp. lactis as starter. The pH of B type yogurt was lower (p < 0.05) than that of A type yogurt from 6 hours to 14 hours after fermentation. The number of microorganisms in all fermented milk showed maximum increases at 2 and 6 hours of fermentation (p < 0.05). The number of microorganisms in fermented milk peaked at 6 hours after fermentation and maintained this level thereafter. There was no effect of rice addition on microbial growth or acidity of the fermented milk. Sensory attributes of yogurt samples with and without added rice were not significantly different. This experiment showed that the production efficiency of yogurt with added rice was not different when two different types of starters were used to manufacture yogurt.

Effect of Additives, Storage Temperature and Regional Difference of Ensiling on the Fermentation Quality of Napier Grass (Pennisetum purpureum Schum.) Silage

  • Tamada, J.;Yokota, H.;Ohshima, M.;Tamaki, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.28-35
    • /
    • 1999
  • The effects of addition of celulases (A cremonium cellulolyticus and Trichoderma viride, CE), a commercial inoculum containing lactic acid bacteria (Lactobacillus casei, LAB), fermented green juice (macerated napier grass with water was incubated anaerobically with 2% glucose for 1 day, FGJ) and glucose (G), and regional difference of ensiling on napier grass (Pennisetum purpureum Schum.) silage were studied by using 900 ml laboratory glass bottle silos under 30 and $40^{\circ}C$ storage conditions in 1995 and 1996. Experiment 1 was carried out to compare the addition of CE, LAB, FGJ and the combinations. Silages were stored for 45 days after ensiling. Experiment 2 studied the effects of applications of CE, LAB, FGJ and G. Experiment 3 was carried out using the similar additives as experiment 2 except for LAB. Silages were stored for 60 days in the experiments 2 and 3. Experiments 1 and 2 were done in Nagoya, and experiment 3 in Okinawa. Sugar addition through CE or G improved the fermentation quality in all the experiments, which resulted in a greater decrease in the pH value and an increased level of lactic acid, while butyric acid contents increased under $30^{\circ}C$ storage condition in CE addition. LAB and FGJ additions hardly affected the silage fermentation quality without additional fermentable carbohydrate. But the combination of LAB, FGJ and glucidic addition (CE and G) improved the fermentation quality. The effect of the regional difference of ensiling between temperate (Nagoya; $35^{\circ}$ N) and subtropical (Okinawa; $26.5^{\circ}$ N) zones on silage fermentation quality was not shown in the present study.

Evaluation of Functional Properties of the Tissue Cultured Wild Ginseng Fermented by Lactobacillus sp. (Lactobacillus sp.균주를 이용한 산삼 배양근 발효물의 기능성 평가)

  • Shin, Eun Ji;Cho, Chang-Won;Kim, Young-Eon;Han, Daeseok;Hong, Hee-Do;Rhee, Young Kyoung
    • Journal of the Korean Society of Food Culture
    • /
    • v.27 no.6
    • /
    • pp.743-750
    • /
    • 2012
  • A tissue cultured wild ginseng (TCWG) suspension was inoculated with lactic acid bacteria and fermented to improve the functionality of TCWG. The utilization of TCWG was increased directly using the freeze-dried powder. The optimal ratio of TCWG powder and water for fermentation was 1:19 (5%), which was selected by measuring the fluidity and viable cell count according to concentration. The effects on ADH activation and immune cell activation by each ferments with 10 kinds of Lactobacillus sp. strains were examined. The ferments with the Lactobacillus casei KFRI 692 strain showed 5.4 times higher ADH activity and 1.3 times higher ALDH activity than the non-fermented TCWG powder (control). The level of NO production and cytotoxicity was also measured by Raw 264.7 cells. The ferment with the Lac. casei KFRI 692 strain showed the highest level of NO production and lower cytotoxicity than the others. Therefore, the Lac. casei KFRI 692 strain was selected as a strain for fermentation of a TCWG suspension to maximize its functionality. To identify the optimal fermentation time of the selected Lac. casei KFRI 692 strain on the 5% TCWG suspension, the viable cell count of lactic acid bacterial and the changes in pH were observed for 72 hours. 24-hrs was found to be the optimal fermentation time. In this way, fermented TCWG with lactic acid bacteria showed higher ADH activation efficacy and immune cell activation than non-fermented TCWG.

Impact of wilting and additives on fermentation quality and carbohydrate composition of mulberry silage

  • Zhang, Ying Chao;Wang, Xue Kai;Li, Dong Xia;Lin, Yan Li;Yang, Fu Yu;Ni, Kui Kui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.254-263
    • /
    • 2020
  • Objective: The objective of this study was to investigate the effects of wilting and additives on the fermentation quality, structural and non-structural carbohydrate composition of mulberry silages. Methods: The selected lactic acid bacteria strains Lactobacillus plantarum 'LC279063' (L1), commercial inoculant Gaofuji (GF), and Trichoderma viride cellulase (CE) were used as additives for silage preparation. Silage treatments were designed as control (CK), L1, GF, or CE under three wilting rates, that is wilting for 0, 2, or 4 hours (h). After ensiling for 30 days, the silages were analyzed for the chemical and fermentation characteristics. Results: The results showed that wilting had superior effects on increasing the non-structural carbohydrate concentration and degrading the structural carbohydrate. After ensiling for 30 days, L1 generally had a higher fermentation quality than other treatments, indicated by the lower pH value, acetic acid, propionic acid and ammonia nitrogen (NH3-N) content, and the higher lactic acid, water soluble carbohydrate, glucose, galactose, sucrose, and cellobiose concentration (p<0.05) at any wilting rate. Wilting could increase the ratio of lactic acid/acetic acid and decrease the content of NH3-N. Conclusion: The results confirmed that wilting degraded the structural carbohydrate and increased the non-structural carbohydrate; and L1 exhibited better properties in improving fermentation quality and maintaining a high non-structural carbohydrates composition compared with the other treatments.

Effects of Adding Oyster Crassostrea gigas Shell Powder on the Food Quality of Chinese Cabbage Kimchi (굴(Crassostrea gigas) 패각 분말 첨가에 의한 배추김치의 식품학적 품질 변화)

  • Do, Hyoung-Hun;Kim, Ji-Hoon;Han, Hae-Na;Kim, Song-Hee;Kim, Gab-Jin;Eom, Sung-Hwan;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.5
    • /
    • pp.596-603
    • /
    • 2015
  • This study investigated the effects of adding oyster shell powder (OSP) from Crassostrea gigas on the food quality of Chinese cabbage Kimchi (CCK). We monitored the changes in microbial levels, pH, acidity and sensory evaluation during the fermentation of CCK treated with various contents of OSP. The microbial assay showed that adding OSP to CCK inhibited the growth of viable cells, total coliforms, and lactic acid bacteria, with the greatest growth inhibition against lactic acid bacteria over the fermentation period. After fermentation for 18 days, the lactic acid bacterial counts in CCK treated with OSP (0.3%, 0.5% and 1%) were at least 1 log CFU/g lower than those of control CCK. In addition, the pH and acidity of CCK treated with OSP were lower than in control CCK over the fermentation period. The overall sensory evaluation of CCK with 0.3% OSP was better than that of control CCK after fermentation for 24 days. In conclusion, OSP treatment, especially 0.3% OSP, enhances the food quality and extends the self-life of CCK, while minimizing the detrimental effects on its sensory characteristics.

Community of natural lactic acid bacteria and silage fermentation of corn stover and sugarcane tops in Africa

  • Cai, Yimin;Du, Zhumei;Yamasaki, Seishi;Nguluve, Damiao;Tinga, Benedito;Macome, Felicidade;Oya, Tetsuji
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.8
    • /
    • pp.1252-1264
    • /
    • 2020
  • Objective: To effectively utilize crop by-product resources to address the shortage of animal feed during the dry season in Africa, the community of natural lactic acid bacteria (LAB) of corn stover and sugarcane tops and fermentation characteristics of silage were studied in Mozambique. Methods: Corn stover and sugarcane tops were obtained from agricultural field in Mozambique. Silage was prepared with LAB inoculant and cellulase enzyme and their fermentation quality and microbial population were analyzed. Results: Aerobic bacteria were the dominant population with 107 colony-forming unit/g of fresh matter in both crops prior to ensiling, while 104 to 107 LAB became the dominant bacteria during ensiling. Lactobacillus plantarum was more than 76.30% of total isolates which dominated silage fermentation in the LAB-treated sugarcane top silages or all corn stover silages. Fresh corn stover and sugarcane tops contain 65.05% to 76.10% neutral detergent fiber (NDF) and 6.52% to 6.77% crude protein (CP) on a dry matter basis, and these nutrients did not change greatly during ensiling. Corn stover exhibits higher LAB counts and water-soluble carbohydrates content than sugarcane top, which are naturally suited for ensiling. Meanwhile, sugarcane tops require LAB or cellulase additives for high quality of silage making. Conclusion: This study confirms that both crop by-products contain certain nutrients of CP and NDF that could be well-preserved in silage, and that they are potential roughage resources that could cover livestock feed shortages during the dry season in Africa.

Lactic Acid Bacteria Strains Used as Starters for Kimchi Fermentation Protect the Disruption of Tight Junctions in the Caco-2 Cell Monolayer Model

  • Jin Yong Kang;Moeun Lee;Jung Hee Song;Eun Ji Choi;Da un Kim;Seul Ki Lim;Namhee Kim;Ji Yoon Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1583-1588
    • /
    • 2022
  • In this study, we investigated the effect of lactic acid bacteria (LAB) strains used as starters for kimchi fermentation, namely Lactococcus lactis WiKim0124, Companilactobacillus allii WiKim39, Leuconostoc mesenteroides WiKim0121Leuconostoc mesenteroides WiKim33, and Leuconostoc mesenteroides WiKim32, on the intestinal epithelial tight junctions (TJs). These LAB strains were not cytotoxic to Caco-2 cells at 500 ㎍/ml concentration. In addition, hydrogen peroxide (H2O2) decreased Caco-2 viability, but the LAB strains protected the cells against H2O2-induced cytotoxicity. We also found that lipopolysaccharide (LPS) promoted Caco-2 proliferation; however, no specific changes were observed upon treatment with LAB strains and LPS. Our evaluation of the permeability in the Caco-2 monolayer model confirmed its increase by both LPS and H2O2. The LAB strains inhibited the increase in permeability by protecting TJs, which we evaluated by measuring TJ proteins such as zonula occludens-1 and occludin, and analyzing them by western blotting and immunofluorescence staining. Our findings show that LAB strains used for kimchi fermentation can suppress the increase in intestinal permeability due to LPS and H2O2 by protecting TJs. Therefore, these results suggest the possibility of enhancing the functionality of kimchi through its fermentation using functional LAB strains.