• Title/Summary/Keyword: lactic-fermentation

Search Result 1,686, Processing Time 0.023 seconds

Effects of Sugars Addition in Alcohol Fermentation of Oriental Melon (첨가 당의 종류가 참외의 알코올발효에 미치는 영향)

  • Jo, Yong-Jun;Jang, Se-Young;Kim, Ok-Mi;Park, Chan-Woo;Jeong, Yong-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.9
    • /
    • pp.1359-1365
    • /
    • 2010
  • This study investigated effects of types of added sugar on alcohol fermentation of oriental melon. According to the results, pH was not significantly different according to types of added sugar and fermentation process. Total acidity increased with fermentation process in all groups by recording around 1.4% at the ninth day of fermentation. For sugar content, its initial level was $22^{\circ}Brix$, and alcohol fermented oriental melon fluids added by sucrose, fructose and glucose recorded similar levels or $6.6{\sim}6.8^{\circ}Brix$ while the fluids added by honey and fructo-oligosaccharide showed a slightly higher level or $8.1^{\circ}Brix$ at the ninth day of fermentation. Although free sugar content was different in the early phase of fermentation according to types of added sugar such as sucrose, fructose and glucose, it reduced with fermentation process to nearly non-detection at the ninth day of fermentation. As organic acids, lactic acid and acetic acid were observed in all phases of fermentation and their contents became higher gradually with fermentation process. Alcohol content showed the highest level in alcohol fermented oriental melon fluid added by sucrose by recording 12.80% and was relatively low in the fluids added by fructose and oligosaccharide. For alcohol, acetaldehyde, n-propanol and iso- amylalcohol contents were not significantly different according to types of added sugar and methanol content was the lowest in the fluid added by fructose by recording 84.99 ppm.

Qualities and Antioxidant Activity of Lactic Acid Fermented-Potato Juice (젖산 발효 감자주스의 품질 특성 및 항산화 활성)

  • Kim, Nam Jo;Yoon, Kyung Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.4
    • /
    • pp.542-549
    • /
    • 2013
  • This study was conducted to investigate the chemical properties and functionality of probiotic potato juice fermented by Lactobacillus casei. Free sugar content (especially glucose) of potatoes decreased by fermentation, but organic acid contents increased by fermentation. Although the free amino acid content of Superior juice significantly decreased after fermentation, Haryeong significantly increased after fermentation. ${\gamma}$-Aminobutyric acid, a functional amino acid, was detected at high levels in all samples and slightly decreased with fermentation, but not significantly. The total polyphenol content of potato juice showed insignificant changes in all samples by fermentation. The hydroxyl radical scavenging activity of all samples was more than 90%, and most of the activity was maintained after fermentation. The nitrite scavenging ability of all samples greatly decreased with fermentation; however a SOD-like activity slightly increased with fermentation, except for Haryeong. There was a significant xanthine oxidase inhibitory effect in fresh potato juice (more than 45%) and a low loss by fermentation. From our results, most of the chemical properties and functionality of potato juice are maintained after fermentation, although free sugar content and nitrite scavenging activity decline. Thus probiotic potato juice fermented by lactic acid could be used as a functional beverage.

Characteristics of Alcohol Fermentation in Oriental Melon by Different Yeast (효모 종류에 따른 참외의 알코올발효 특성)

  • Jo, Yong-Jun;Park, Chan-Woo;Jang, Se-Young;Kim, Ok-Mi;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.18 no.5
    • /
    • pp.779-785
    • /
    • 2011
  • This study was conducted to investigate and compare the characteristics of alcohol fermentation in oriental melon by different yeast. As a result, no significant difference in pH, total acidity and sugar content was found in alcohol fermentation of oriental melon by different yeast. The pH was shown to be constantly maintained but the total acidity was shown to increase during fermentation process. The sugar content was rapidly decrease starting from 3 day of fermentation, and it was reduced to be approximately 7 oBrix after fermentation. For organic acid content, lactic and citric acid contents were shown to be the highest in all periods of fermentation, which revealed that lactic and citric acid were major organic acids. Free sugar content were shown to gradually decrease during the fermentation and to be rarely detected at 9 days of fermentation. Alcohol content was shown to be 14.20% at (C) S. cerevisiae RC-212, which was the highest content. It was shown to be more than 12% at other periods, which showed that no significant difference in alcohol content was found according to different yeast. For alcohol components, acetaldehyde content was shown to be the highest at (E) S. cerevisiae K1-V1116, and methanol content was shown to be relatively higher at (C) S. cerevisiae RC-212 and (D) S. bayanus EC-1118. N-propanol, 2-methyl-1-propanol and isoamyl alcohol, which belong to fusel oil, were shown to be produced at 3 day of fermentation and gradually increase. These results, no significant difference in physicochemical properties of alcohol fermentation in oriental melon by different yeast.

Changes of Chemical Composition and Microflora in Commercial Kimchi (시판 김치의 발효 온도별 성분과 미생물 변화)

  • Shin, Dong-Hwa;Kim, Moon-Sook;Han, Ji-Sook;Lim, Dae-Kwan;Bak, Wan-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.137-145
    • /
    • 1996
  • Chemical changes, lactic acid bacteria and yeast counts in kimchi prepared by a commercial manufacturer in large scale were monitored at different fermentation temperature. The optimum pH of kimchi, around pH 4.2, reached within 2 days at $25^{\circ}C$, 3 days at $15^{\circ}C$ and 23 days at $5^{\circ}C$ fermentation, respectively. The optimum acidity calculated as lactic acid was not exactly coincident with pH. The total viable count reached at maximum within 2 days at $25^{\circ}C$, 6 days at $15^{\circ}C$ and 12 days at $5^{\circ}C$ fermentation, respectively. The identified strains of Lactobacilli during kimchi fermentation were L. brevis, L. plantarum and L. acidophilus with 3 unidentified strains. L. brevis, L. plantarum appeared from the first stage of fermentation to the terminal at $15^{\circ}C$ and $25^{\circ}C$ with keeping a constant level of viable number. In case of Leuconostoc species, L. mesenteroides subsp. mesenteroides was identified. This strain increased in viable number at the beginning of fermentation and dropped sharply at all fermentation temperatures. Pediococcus species including P. pentosaceus and one unidentified strain increased at the first stage of fermentation and decreased after on. Streptococcus faecium subsp. casseliflavus which appeared at the middle stage and Aerococcus viridans which was sole strain were also confirmed during kimchi fermentation. Cryptococcus laurenti was identified at all fermentation temperature and disappeared at the first stage of fermentation. It was reappeared 10 days only after fermentation at $25^{\circ}C$.

  • PDF

Changes of the Lactic Acid Bacteria and Selective Inhibitive Substances against Homo and Hetero Lactic Acid Bacteria Isolated from Kimchi (김치숙성에 관여하는 정상발효유산균과 이상발효유산균의 변화와 선택적 저해제에 관한 연구)

  • 이신호;박나영;최우정
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.5
    • /
    • pp.410-414
    • /
    • 1999
  • This study was carried out to investigate distribution of homofermentative lactic acid bacteria(LAB) and heterofermentative LAB during kimchi fermentation period. The number of heterofermentative LAB was decreased during the fermentation. The ethanol extracts of Lithospermum erythrorhizon and Sophrora flavescens AITON showed strong antimicrobial activities against both homofermentative LAB and heterofermentative LAB. The extracts of Glycyrrhiza uralensis and Curcuma longa showed stronger antimicrobial activity against hetrofermentative LAB than against homofermentative LAB. the antimicrobial activities of the plant extracts against LAB were accelerated by mixing of two or three kinds.

  • PDF

Dectection of the Bacteriocin from Lactic Acid Bacteria Involved in Kimchi Fermentation (김치 발효에 관여하는 젖산균에서의 Bacteriocin의 검색)

  • Cho, Jae-Sun;Jung, Sung-Je;Kim, Young-Mok;Chun, Uck-Han
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.700-706
    • /
    • 1994
  • Lactic acid bacteria in Kimchi fermentation were tested for inhibitory activity against Gram positive bacteria and Gram negative bacteria. The Lactobacillus brevis (KCCM 35464) was found to produce a antimicrobial substance. It showed relatively wide range of inhibition spectrum against gram positive and gram negative bacteria and maintained the inhibitory activity between pH 4.0 and pH 9.0. The antimicrobial substance was obtained in the stationary growth phase and was purified by gel chromatography. The inhibitory effect of the antimicrobial substance on sensitive bacterial strains was determined by filter paper test. The activity of antimicrobial substa- nce was stable at 75$\circ$C. On the basis of its electrophoretic pattern is SDS-PAGE, antimicrobial substance appeared as a single band of 59 KDalton.

  • PDF

Effects of Different Additives on Fermentation Characteristics and Protein Degradation of Green Tea Grounds Silage

  • Wang, R.R.;Wang, H.L.;Liu, X.;Xu, C.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.616-622
    • /
    • 2011
  • This study evaluated the fermentation characteristics and protein degradation dynamics of wet green tea grounds (WGTG) silage. The WGTG was ensiled with distilled water (control), or lactic acid bacteria (LAB), enzyme (E), formic acid (FA) and formaldehyde (FD) prior to ensiling. Three bag silos for each treatment were randomly opened at 0, 3, 7, 14, 28 and 60 days after anaerobic storage. For all the treatments, except for FA, there was a rapid decline in pH during the first 7 days of ensiling. LAB treatment had higher lactic acid content, lower ammonia-N ($NH_3$-N) and free-amino nitrogen (FAA-N) contents than other treatments (p<0.05). E treatment had higher lactic acid, water-soluble carbohydrates (WSC) and non-protein nitrogen (NPN) content than the control (p<0.05). FA treatment had higher $NH_3$-N and FAA-N content than the control (p<0.05). FD treatment had lower NPN and FAA-N content than the control, but it did not significantly inhibit the protein degradation when compared to LAB treatment (p>0.05). Results indicate that LAB treatment had the best effect on the fermentation characteristics and protein degradation of WGTG silage.

Lactic Acid Bacterial Fermentation Increases the Antiallergic Effects of Ixeris dentata

  • Park, Eun-Kyung;Sung, Jin-Hee;Trinh, Hien-Trung;Bae, Eun-Ah;Yun, Hyung-Kwon;Hong, Seong-Sig;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.308-313
    • /
    • 2008
  • Ixeris dentata (ID, family Asteraceae), called Seumbakuy in Korea, was fermented with lactic acid bacteria (LAB) and their antiallergic activities were investigated. Fermentation of ID with Bifidobacterium breve or Lactobacillus acidophilus increased its inhibition of degranulation in RBL-2H3 cells induced by the IgE-antigen complex. Oral administration of these extracts to mice inhibited the passive cutaneous anaphylaxis (PCA) reaction induced by the IgE-antigen complex and scratching behaviors induced by compound 48/80. The fermented ID more potently inhibited the PCA reaction and scratching behaviors than the non-fermented one. These extracts also inhibited mRNA expression of TNF-${\alpha}$ and IL-4, as well as NF-${\kappa}B$ activation in RBL-2H3 cells induced by the IgE-antigen complex. These findings suggest that LAB fermentation improves ID-mediated inhibition of IgE-induced allergic diseases such as rhinitis and asthma, and that ID works by inhibiting degranulation and NF-${\kappa}B$ activation in mast cells and basophils.

Studies on the storage stability of Andong Sikhe (안동식혜의 저장 안정성에 관한 연구)

  • 권하영;윤숙경
    • Korean journal of food and cookery science
    • /
    • v.11 no.3
    • /
    • pp.287-294
    • /
    • 1995
  • This study was carried out to determine optimal conditions in storing Andong sikhe. We made Andong sikhe according to the traditional recipe, and fermentation it has been stored either with (group B) or without (group A) "Saengkiwon Songi" for 40 days at 7${\pm}$2$^{\circ}C$. The changes of pHs, sweetness, the number of total bacteria and lactic acid producing bacteria, the quantities of organic acids and free sugars produced had been measured regularly since the 3rd day after fermentation. The results are as follows: The pH of both groups were 5.63 immediately after fermentation, and then gradually decreased to 4.02∼4.05. The sweetness was higher in group A (4.0) until the 15th day of storage, and then the same (17.5) in both groups. The sample from the 6th day in group A, and the samples from the 3rd and the 9th day in group B obtained the highest scores in their sensory evaluation. The numbers of total bacteria and lactic acid producing bacteria showed maxium on the 3rd day in both groups. 8 kinds of organic acids were detected, lactic acid being the most of all. 3 kinds of free sugars - fructose, glucose and maltose - were detected ; glucose and maltose have gradually increased throughout the storage period but fructose was not been detected after the 6th day in both groups.

  • PDF

Effect of Ensiling with Acremonium Cellulase, Lactic Acid Bacterial and Formic Acid on Tissue Structure of Timothy and Alfalfa

  • Asian, Aniwaru;Okamoto, M.;Yoshihira, T.;Ataku, K.;Narasaki, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.6
    • /
    • pp.593-598
    • /
    • 1997
  • The changes of tissue structure in timothy and alfalfa during ensiling process with silage additives; lactic acid bacteria, cellulase and formic acid, were observed with a video microscope. Stem samples were obtained from the second internode, and cut to divide into 2 pieces. One piece was for observation of ensiled material and the other was for silage. The latter piece was put into a nylon cloth bag, and ensiled with grass for 50 days in a small experimental silo Lignification of the plant tissues was checked by acid phloroglucinol. Natural silage fermentation resulted in some degradation of less lignified parenchyma in both plant species. However, lignified sclerenchyma and vascular bundles remained intact. The cellulase enhanced the degradation of parenchyma tissue, while the formic acid suppressed the degradation. The effect of lactobacillus was small. The percentage of remained cross sectional area of stem and the loss of NDF and ADF by silage fermentation confirmed the observation. High negative correlations were obtained between the remained area and loss of fibrous components during silage fermentation in both plants, and between the loss of fibrous components and in vitro dry matter digestibility in timothy but not in alfalfa.