• 제목/요약/키워드: lactic-fermentation

검색결과 1,680건 처리시간 0.03초

매실을 이용한 젖산발효의 최적 조건 (Optimization of the Lactic Acid Fermentation of Maesil(Prunus mume))

  • 황자영
    • 한국식품영양학회지
    • /
    • 제21권4호
    • /
    • pp.391-396
    • /
    • 2008
  • In this study, we attempted to optimize the fermentation processes in the production of lactic acid juice with 20% Maesil(Prunus mume) extract using Lactobacillus plantarum isolated from Kimchi, assessing a variety of pH, temperature, sugar compositions, and sugar concentrations. In the preparation of fermented Maesil(Prunus mume) extract, the optimal pH and fermentation temperature were 4.0 and $35^{\circ}C$, respectively. When the effects of various sugar sources and concentrations on lactic acid fermentation were assessed, 15% fructose was shown to yield more acid productivity than was observed with other sugar sources. The optimum composition, on the basis of our sensory evaluations, was determined to be a fructose concentration of 15% and a fermentation time of $72{\sim}96$ hours.

쑥 추출물이 첨가된 Set-Type Yoghurt의 발효 특성 (Fermentation Characteristics of Set-Type Yoghurt from Milk Added with Mugwort Extract)

  • 배인휴;홍기룡;오동환;박정로;최성희
    • 한국축산식품학회지
    • /
    • 제20권1호
    • /
    • pp.21-29
    • /
    • 2000
  • This study was carried out to investigate the fermentation characteristics and storage of set-type yoghurt added mugwort extracts(AME) such as pH, growth of lactic acid bacteria, number of viable cells, viscosity, and sensory characteristics during 24 hours fermentation and 15 days storage. Addition of mugwort extracts was grown rapidly of lactic acid bacteria rather than that of control and also 4 or 8% AME groups were grown similar to control. The drop of AME pH of broth was less compared with control during incubation of lactic acid bacteria. The growth of lactic acid bacteria during incubation of AME yoghurt was not different of viable cell count between AME group and control in beginning time, but the viable cell count of AME groups were increased depended opon addition quantity of AME in ending time. Addition of mugwort extracts was not affect on pH change during yoghurt fermentation and increased a lactic acid bacteria number as well as no effect of yoghurt fermentation in ending time. The viscosity of yoghurt was almost not changed 3 hours after yoghurt mix and increased rapidly 6 hours after yoghurt mix. Although control and 0.5% AME group showed maximum viscosity at 18 hours of fermentation, 1 and 2% AME group showed linear increase until 24 hours of fermentation. Mugwort did not affect pH and viable cel number of lactic acid bacteria during 15 days storage 24 hours after fermentation. Sensory evaluation of the AME yoghurt showed that flavour, texture and acid taste were not affected by addition of mugwort. However, the appearance and taste were dropped by addition of mugwort.

  • PDF

Effects of Lactic Acid Bacteria Inoculant on Fermentation Quality and in vitro Rumen Fermentation of Total Mixed Ration

  • Choi, Yeon Jae;Lee, Sang Suk
    • 한국초지조사료학회지
    • /
    • 제39권3호
    • /
    • pp.132-140
    • /
    • 2019
  • Fermented total mixed ration (TMR) is a novel feed for ruminants in South Korea. The purpose of this study was to evaluate the effects of lactic acid bacteria (LAB) on the quality of TMR and in vitro ruminal fermentation. Strains of three LAB spp. (Lactobacillus plantarum, L. brevis, L. mucosae) were used in fermentation of TMR. Inoculations with the three LAB spp. lowered pH and increased concentrations of lactic acid, acetic acid, and total organic acid compared to non-LAB inoculated control (only addition of an equivalent amount of water) (p<0.05). Bacterial composition indicated that aerobic bacteria and LAB were higher. However, E. coli were lower in the fermented TMR than those in the control treatment (p<0.05). Among the treatments, L. brevis treatment had the highest concentration of total organic acid without fungus detection. Gas production, pH, and ammonia-nitrogen during ruminal in vitro incubation did not differ throughout incubation. However, ruminal total VFA concentration was higher (p<0.05) in the LAB spp. treatments than the control treatment at 48 hours. Overall, the use of L. brevis as an inoculant for fermentation of high moisture. TMR could inhibit fungi growth and promote lactic fermentation, and enhance digestion in the rumen.

김치 젖산균과 효모의 혼합배양 방법에 의한 과채류즙의 발효양상 (Fermentation Aspects of Fruit-Vegetable Juice by Mixed Cultures of Lactic Acid Bacteria Isolated from Kimchi and Yeast)

  • 최홍식;김현영;여경목;김복남
    • 한국식품영양과학회지
    • /
    • 제27권6호
    • /
    • pp.1059-1064
    • /
    • 1998
  • Fermented beverage using lactic acid bacteria isolated from kimchi was investigated. Lactic acid bacteria KL 1, KD 6, KL 4 strains from kimchi, or obtained Lactobacillus acidophilus, Lactobacillus plantarum, Leuconostoc mesenteroides with and without yeast(Saccharomyces cerevisiae) were inoculated in fruit vegetable juice for single and mixed culture fermentation. During the fermentation by bacterial strain and yeast for 1~3 days at 30oC, various fermentation behaviors were observed. The growth rate of mixed culture of KL 1 and yeast was higher than that of single culture by KL 1 alone during the fermentation. The amount of organic acid produced by the mixed culture fermentation of KL 1 and yeast was 0.82%(3 day) or 0.58%(1 day) and with the final pH of 3.3(3 day) or 4.2(1 day). These mixed culture systems of isolated strains or other bacterial strains had almost similar results of growth rate and acid production. Among several bacterial strains, KL 1 was suitable for the mixed culture fermentation with yeast in terms of desirable fermentation behavior and organoleptical quality. The selected strain, KL 1 was identified as Leuconostoc spp. through the series of tests on carbohydrate fermentation and biochemical characteristics.

  • PDF

Production of lactic acid by Lactobacillus paracasei isolated from button mushroom bed

  • Kim, Sun-Joong;Seo, Hye-Kyung;Kong, Won-Sik;Yoon, Min-Ho
    • 한국버섯학회지
    • /
    • 제11권4호
    • /
    • pp.187-193
    • /
    • 2013
  • A galactose fermentation bacterium producing lactose from red seaweed, which was known well to compromise the galactose as main reducing sugar, was isolated from button mushroom bed in Buyeo-Gun, Chungchugnamdo province. The lactic acid bacteria MONGB-2 was identified as Lactobacillus paracasei subsp. tolerans by analysis of 16S rRNA gene sequence. When the production of lactic acid and acetic acid by L. paracasei MONGB-2 was investigated by HPLC analysis with various carbohydrates, the strain MONGB-2 efficiently convert the glucose and galactose to lactic acid with the yield of 18.86 g/L and 18.23 g/L, respectively and the ratio of lactic acid to total organic acids was 1.0 and 0.91 g/g for both substrates. However, in the case of acetic acid fermentation, other carbohydrates besides galactose and red seaweed hydrolysate could not be totally utilized as carbon sources for acetic acid production by the strain. The lactic acid production from glucose and galactose in the fermentation time courses was gradually enhanced upto 60 h fermentation and the maximal concentration reached to be 16-18 g/L from both substrates after 48 h of fermentation. The initial concentration of glucose and galactose were completely consumed within 36 h of fermentation, of which the growth of cell also was maximum level. In addition, the bioconversion of lactic acid from the red seaweed hydrolysate by L. paracasei MONGB-2 appeared to be about 20% levels of the initial substrates concentration and this results were entirely lower than those of galactose and glucose showed about 60% of conversion. The apparent results showed that L. paracasei MONGB-2 could produce the lactic acid with glucose as well as galactose by the homofermentation through EMP pathway.

Lactobacillus acidophilus NCFM의 배양 및 저장 중 D(-) 및 L(+)-lactic acid의 변화 (D(-) and L(+)-Lactic Acid Determination of Lactobacillus acidophilus during Fermentation and Storage Period)

  • 이경욱;신용국;백승천
    • 한국식품과학회지
    • /
    • 제30권1호
    • /
    • pp.168-174
    • /
    • 1998
  • 이 연구는 발효유 제조시 사용되는 Lactobacillus acidophilus NCFM이 생산하는 lactic acid의 생성변이를 조사하므로써 발효유 제조시 D(-)-lactic acid의 함량을 최소화하고 보존 중의 D(-)-lactic acid의 함량도 최소화하므로써 보다 인체에 유익한 발효유의 제조를 위한 기초적인 정보를 제공하기 위하여 실시되었으며, 그 결과는 다음과 같다. 발효온도는 $37^{\circ}C$에서 산생성이 가장 우수하였으며, D(-)-lactic acid의 비율도 가장 낮았다. 보존온도에 따른 변이에서는 저온에서 후산생성도 적었으며, D(-)-lactic acid의 비율도 가장 낮았다. 또한 처리에 따른 산생성에서는 호기상태에서 산생성이 가장 우수하였으며, D(-)-lactic acid의 함량이 가장 낮았다.

  • PDF

Changes in physicochemical property and lactic acid bacterial community during kimchi fermentation at different temperatures

  • Lee, Hee Yul;Haque, Md. Azizul;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • 제63권4호
    • /
    • pp.429-437
    • /
    • 2020
  • This study aimed to investigate the change in physicochemical properties and lactic acid bacterial communities during kimchi fermentation at different temperatures (8, 15, and 25 ℃) using two molecular genetics approaches, multiplex polymerase chain reaction and 16S rRNA gene sequencing. The pH during fermentation at 8, 15, and 25 ℃ decreased from 6.17 on the initial fermentation day to 3.92, 3.79, and 3.48 after 54, 30, and 24 days of fermentation, respectively, while the acidity increased from 0.24% to 1.12, 1.35, and 1.54%, respectively. In particular, the levels of lactic acid increased from 3.74 g/L on the initial day (day 0) to 14.43, 20.60, and 27.69 g/L during the fermentation after 24, 18, and 12 days at 8, 15, and 25 ℃, respectively, after that the lactic acid concentrations decreased slowly. The predominance of lactic acid bacteria (LAB) in the fermented kimchi was dependent on fermentation stage and temperature: Lactobacillus sakei appeared during the initial stage and Leuconsotoc mesenteroides was observed during the optimum-ripening stage at 8, 15, and 25 ℃. Lac. sakei and Lactobacillus plantarum grew rapidly in kimchi produced at 8, 15, and 25 ℃. In addition, Weissella koreensis first appeared at days 12, 9, and 6 at 8, 15, and 25 ℃ of fermentation, respectively. This result suggests that LAB population dynamics are rather sensitive to environmental conditions, such as pH, acidity, salinity, temperature, and chemical factors including free sugar and organic acids.

Model Development for Lactic Acid Fermentation and Parameter Optimization Using Genetic Algorithm

  • LIN , JIAN-QIANG;LEE, SANG-MOK;KOO, YOON-MO
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1163-1169
    • /
    • 2004
  • An unstructured mathematical model is presented for lactic acid fermentation based on the energy balance. The proposed model reflects the energy metabolic state and then predicts the cell growth, lactic acid production, and glucose consumption rates by relating the above rates with the energy metabolic rate. Fermentation experiments were conducted under various initial lactic acid concentrations of 0, 30, 50, 70, and 90 g/l. Also, a genetic algorithm was used for further optimization of the model parameters and included the operations of coding, initialization, hybridization, mutation, decoding, fitness calculation, selection, and reproduction exerted on individuals (or chromosomes) in a population. The simulation results showed a good fit between the model prediction and the experimental data. The genetic algorithm proved to be useful for model parameter optimization, suggesting wider applications in the field of biological engineering.

Free Fatty Acid Accumulation by Mesophilic Lactic Acid Bacteria in Cold-Stored Milk

  • Coskun, Hayri;Ondul, Eda
    • Journal of Microbiology
    • /
    • 제42권2호
    • /
    • pp.133-138
    • /
    • 2004
  • This study was aimed to determine the accumulation of free fatty acid by mesophilic lactic acid bac-teria (Lactococcus lactis subsp. lactis 1471, Lactococcus lactis subsp. cremoris 1000 and Lactobacillus casei 111) in cold-stored milk. According to the results, all cold-stored milks had higher acid degree val-ues than those of fresh milk. This phenomenon showed that a slight increase occurred in the accumulation of free fatty acids as a result of spontaneous lipolysis during cold storage. All lactic acid bacteria showed good performance in production of titratable acidity, which increased during fermentation of the milk (fresh and stored milks). Moreover, as the storage time was prolonged, more free fatty acid accumulation was obtained from the fermentation of the cold-stored milk by the investigated lactic acid bacteria. The control milk, which was without lactic acid bacteria, showed no change in the accumulation of free fatty acid during fermentation. From this result, it can be suggested that longer cold-storage time can induce higher free fatty acid accumulation in milk by lactic acid bacteria.

Bioconversion Using Lactic Acid Bacteria: Ginsenosides, GABA, and Phenolic Compounds

  • Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권5호
    • /
    • pp.869-877
    • /
    • 2017
  • Lactic acid bacteria (LAB) are used as fermentation starters in vegetable and dairy products and influence the pH and flavors of foods. For many centuries, LAB have been used to manufacture fermented foods; therefore, they are generally regarded as safe. LAB produce various substances, such as lactic acid, ${\beta}$-glucosidase, and ${\beta}$-galactosidase, making them useful as fermentation starters. Existing functional substances have been assessed as fermentation substrates for better component bioavailability or other functions. Representative materials that were bioconverted using LAB have been reported and include minor ginsenosides, ${\gamma}$-aminobutyric acid, equol, aglycones, bioactive isoflavones, genistein, and daidzein, among others. Fermentation mainly involves polyphenol and polysaccharide substrates and is conducted using bacterial strains such as Streptococcus thermophilus, Lactobacillus plantarum, and Bifidobacterium sp. In this review, we summarize recent studies of bioconversion using LAB and discuss future directions for this field.