• Title/Summary/Keyword: lactic-fermentation

Search Result 1,686, Processing Time 0.024 seconds

Lactic Acid Fermentation of Dioscorea batatas and Its Anti-Inflammatory Effects on TNBS-induced Colits Model (TNBS에 의해 유도된 마우스 대장염모델에서 유산균 발효 마의 항염효과)

  • Hyun, Mee-Sun;Hur, Jung-Mu
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.1
    • /
    • pp.51-55
    • /
    • 2011
  • To develop a health-aid preparation of Dioscorea batatas (DB), lactic acid fermentation was attempted using a mixed starter comprising of Lactobacillus acidophilus, Lactobacillus plantarum, Bifidobacterium longum. The anaerobic fermentation of a 10% DB flour suspension gave a uniform suspension of pH 3.65, containing $8{\times}10^6$ CFU/mL lactic acid bacteria. During the administration of the lactic acid fermented DB (FDB) and DB to trinitrobenzene sulfonic acid (TNBS)-induced colitis mouse model, histological lesions, morphological damage, and myeloperoxidase acitivity were significantly reduced at a dosage of 200 and 400 mg/kg/day. Dose-response (200 and 400 mg/kg/day) studies revealed that FDB pre-treatment of mice significantly ameliorated the appearance of diarrhoea and the disruption of colonic architecture. In FDB-pretreated mice, there was a significant reduction in the degree of both neutrophil infiltration (measured as decrease in myeloperoxidase activity) and weight loss rates. Theses findings suggest that FDB exerts beneficial effects in experimental colitis and may be useful in the treatment of inflammatory bowel disease.

Effect of Temperature, pH and Addition of Minerals in Lactic Acid Fermentation using Enterococcus faecalis RKY1. (Enterococcus faecalis RKYl을 이용한 젖산발효에서 온도, pH및 미량원소 첨가의 영향)

  • 윤종선;위영중;오후록;류화원
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.258-263
    • /
    • 2002
  • In this study the effects of temperature, pH, and addition of some minerals were investigated in lactic acid fermentation using Enterococcus faecalis RKYI . As a result, strain of RKYl had retained biological activity at the wide range of temperature($34-46^{\circ}C$) and pH(6.0-9.0), and the optimum temperature and pH were $42^{\circ}C$ and 7.0, respectively. When the effect of various phosphate sources added on lactic acid fermentation was studied, di-basic forms of phos-phate(especially, ammonium phosphate and potassium phosphate) had more stimulating effect rather than mono-basic phosphate sources. And there were no perceivable effect of manganese and magnecium salts addition on lactic acid fermentation.

Lactic Acid Fermentation of Chinese Yam (Dioscorea batatas Decne) Flour and Its Pharmacological Effect on Gastrointestinal Function in Rat Model

  • Shin, Kyung-Ok;Jeon, Jeong-Ryae;Lee, Ji-Seon;Kim, Jong-Yeon;Lee, Chu-Hee;Kim, Soon-Dong;Yu, Yeon-Su;Nam, Doo-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.240-244
    • /
    • 2006
  • To develop a health-aid preparation of Chinese yam (Dioscorea batatas Decne), lactic acid fermentation was attempted using a mixed starter comprising of Lactobacillus acidophilus, Streptococcus thermophilus, and Bifidobacterium bifidus. The anaerobic fermentation of a 5% Chinese yam flour suspension gave a uniform suspension of pH 4.35, containing $7.76{\times}10^6 CFU/mL$ lactic acid bacteria (LAB), and which was found to be acceptable to the panel from a sensory assessment. During the administration of the lactic acid fermented (LAF) Chinese yam to Sprague Dawley rats for 6 weeks, a smaller body weight gain, but greater excretion of feces were observed, implying the creation of a healthy gastrointestine on the administration of LAF Chinese yam, which was also confirmed by the gastrointestinal motility of the feed in rats fed on LAF Chinese yam. The constipation induced by loperamide was further suppressed in a rat group fed on a LAF Chinese yam diet, which was qualified from healthy gastrointestinal flora established by LAB. A serochemical analysis revealed a slight improvement in the blood glucose, neutral lipid and total cholesterol concentrations on administration of LAF Chinese yam, suggesting LAF Chinese yam could be served as a healthy-aid preparation, even for hyperglycemia or hyperlipidemia patients.

Application of lactic acid bacteria on fermentation quality in different stages of rye forage - an in-vitro approach

  • Choi, Ki-Choon;Srigopalram, Srisesharam;Ilavenil, Soundharrajan;Kuppusamy, Palaniselvam;Park, Hyung-Su;Jung, Jeong Sung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.283-283
    • /
    • 2017
  • The objective of the present study is to analyze the lactic acid bacteria (LAB) effects on rye silage fermentation at different stages. Different stages (Booting, Heading, Flowering, and Late flowering stage) of rye were collected from the National livestock farm, National Institute of Animal Science, South Korea. Rye sample was inculcated with lactic acid bacteria and incubated at the anaerobic condition for three months. The nutrient profile such as crude protein (CP), Acid detergent fibre, Neutral detergent fibre and total digestibility nutrients were increased in both control and LAB inculcated samples at all the stages of rye forage. The pH of rye silage was reduced at both stages by LAB inoculation as compared with control. The lactate content was increased in all stages of rye sample by LAB. The acetate concentration and butyrate was reduced in LAB inoculated rye sample. However, acetate concentration was slightly high in LAB inculcated rye at heading and late flowering stage. The LAB population was greater in LAB inoculated rye sample as compared with control sample. However, the massive population was noted in booting stage of rye than the other stages. It indicates the inoculated LAB is the main reason for increasing fermentation quality in the sample through pH reduction by lactate production. Overall results suggest that the isolated lactic acid bacterium is the potent strain that could be suitable for rye forage fermentation at different stages.

  • PDF

Changes in Acid Production, Sensory Properties of Yogurt and Volatile Aroma Compounds during Lactic Fermentation in Milk added with Egg White Powder (난백분말 첨가 우유에서 젖산균의 산생성, 요구르트의 관능성 및 휘발성 향기 성분의 경시적인 변화)

  • Ko, Young-Tae;Kyung, Hyun-Min
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.612-617
    • /
    • 1995
  • Changes in titratable acidity, pH, viable cells, sensory properties and volatile aroma compounds of yogurt during lactic fermentation in milk added with egg white powder (EWP) have been studied. Milk added with 1% or 2% (W/V) of EWP was fermented with Lactobacillus acidophilus for 30 hr. Acidity of milk added with EAT increased gradually during lactic fermentation for 30 hr, pH dropped gradually and number of viable cells increased and reached stationary phase at about 9 hr. Addition of EWP significantly stimulated acid production by lactic acid bacteria and stimulating effect of 2% EWP addition on acid production was slightly higher than that of 1% EWP addition. Sensory evaluation showed that optimum fermentation time of yogurt prepared from milk added with 2% of EWP was about 15 hr. Gas chromatographic analysis showed that the amount of acetone and butanol decreased gradually and that of ethanol increased until 30 hr. Diacetyl and acetoin were first detected after 6hr and 9hr, respectively, and then increased until 30 hr.

  • PDF

Effects of Lactic Acid Bacteria Inoculants on Fermentation of Low Moisture Fresh Rice Straw Silage at Different Storage Periods

  • Kuppusamy, Palaniselvam;Soundharrajan, Ilavenil;Park, Hyung Soo;Kim, Ji Hea;Kim, Won Ho;Jung, Jeong Sung;Choi, Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.165-170
    • /
    • 2019
  • The purpose of this study was to analyze the effectiveness of different storage periods of lactic acid bacteria (LAB)-fermented low moisture fresh rice straw silage. The low moisture fresh rice straw sample was inculcated with LAB and stored for different storage periods such as 45, 90, and 365 days, respectively. The low moisture fresh rice straw (LMFRS) silage inoculated with LAB exhibited reduction in pH throughout the fermentation as compared with the control (P<0.05). The lactic acid content was increased at the late fermentation period (90 and 365 days, respectively) in LAB inoculated LMFRS silage as compared with the control (P<0.05). In contrast, the acetic acid and butyric acid concentrations were slightly reduced in the LAB inoculated LMFRS silage sample at 90 and 365 days fermentation, respectively. Meanwhile, the non-inoculated LMFRS silage showed higher amounts of acetic acid and butyric acid at an extended fermentation with low bacterial population as compared with the LAB inoculated LMFRS silage. However, lactic acid concentration was slightly high in the non-inoculated LMFRS silage at early 45 days fermentation. Additionally, the nutrient profile such as crude protein (CP), acid detergent fibre (ADF), neutral detergent fibre (NDF), and total digestibility nutrients (TDN) were not significantly different in control and LAB inculcated samples during all fermentation. Though, the microbial population was greater in the LAB inoculated LMFRS silage as compared with the control. However, the massive population was noted in the LAB inoculated LMFRS silage during all fermentation. It indicates that the inoculated LAB is the main reason for increasing fermentation quality in the sample through pH reduction by organic acids production. Overall results suggest that the LAB inoculums are the effective strain that could be a suitable for LMFRS silage fermentation at prolonged days.

Demineralization of Crab Shells by Chemical and Biological Treatments

  • Jung Woo-Jin;Jo Gyung-Hyun;Kuk Ju-Hee;Kim Kil-Yong;Park Ro-Dong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.67-72
    • /
    • 2005
  • To achieve demineralization of crab shell waste by chemical and biological treatments, lactic acid and lactic acid bacterium were applied. In 5.0 and $10\%$ lactic acid, pH rapidly decreased from 6.8 to 4.2 and from 4.5 to 2.4 at day 3, respectively, and thereafter the pH remained at an almost constant level. In a $10\%$ lactic acid bacterium inoculum, pH lowered to 4.6 at day 5. Relative residual ash content rapidly decreased to 49.1 and $16.4\%$ in 5 and $10\%$ lactic acid treatments, respectively, for the initial 12 h. In 2.5, 5 and $10\%$ lactic acid bacterium inoculums, relative residual ash content rapidly decreased to 55.2, 40.9 and $44.7\%$, respectively, on the first day. Residual dry masses were 76.4, 67.8 and $46.6\%$ in 2.5, 5 and $10\%$ lactic acid treatments, respectively, for the initial 12 h. After a one-time exchange of the lactic acid solution, in the $5.0\%$ lactic acid treatment, residual dry mass rapidly decreased from 66.0 to $41.4\%$. In 2.5, 5 and $10\%$ lactic acid bacterium inoculums, residual dry masses decreased to 67.6, 57.4 and $59.6\%$ respectively, on the first day. Protein contents after demineralization ranged from $51.3{\sim}54.7\%$ in the chemical treatments and decreased to $32.3\%$ in the lactic acid fermentation process. A negative relationship was shown between pH and demineralization rate in lactic acid and lactic acid bacterium treatments. These results suggest that lactic acid fermentation can be an alternative for demineralization of crab shells, even though the rate and efficiency of the demineralization is lower than the chemical treatment.

Stimulating effects of Chlorella and Scenedesmus cell upon the growth and fermentation of L. delbrukii and B. subtilis (Chlorella와 Scenedesmus 세포 함유물질이 Lactobacillus delbrukii 와 Bacillus subtilis 에 미치는 성장 촉진효과)

  • 정지원;이태우;이주식
    • Korean Journal of Microbiology
    • /
    • v.6 no.1
    • /
    • pp.12-21
    • /
    • 1968
  • The accelerate effects on the growth rate and the capacity of fermentation of L. delbrukii and B. subtilis was investigated in the Henneberg's medium added by various amounts of cellular components of Chlorella and Scenedesmus and also was investigated in the media added micronutritional elements such as Mn, Fe and Mo, etc. The results in the comparative experiments are as follow; 1. Various amounts of Chlorella cell components in the media accelerated remarkably the lactic acid formation and growth of L. delbrukii. For example, lactic acid formation in the medium of contained 1 percent Chlorella cell components was promoted more than twice effects compare with control. 2. The formation of .alpha.-amylase by B. subtilis in the medium of 2 percent Chlorella cell contents was also promoted more than nine twice effects compare with control. 3. The formation of lactic acid of L. delbruckii in the medium of Scenedesmus cell contents was a little more than in the medium of Chlorella cell contents. 4. The lactic acid fermented level attained with the addition of 0.2-0.25 percent Chlorella cells was the effect of promoting fermentation attained of saturating level at 100$\mu$g. /ml. of Mn and 0. 1 $\mu$g./ml. of Fe.

  • PDF

Changes in Kimchi Quality as Affected by the Addition of Sasa borealis Makino Extract (조릿대(Sasa borealis Makino) 추출물 첨가가 배추김치의 품질에 미치는 영향)

  • Yook, Hong-Sun;Jo, Ji-Eun;Kim, Kyung-Hee;Hwang, Yong-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.405-412
    • /
    • 2010
  • This study was focused on finding the potential of hot water extract of bamboo shoot (Sasa borealis Makino) on the fermentation of Kimchi made with Chinese cabbage. The properties of Kimchi were examined up to 28 days of storage. The pH and acidity decreased regardless of treatments and showed no significant difference between treatments. There was a decreasing tendency of both total and reducing sugars in kimchi but the addition of bamboo extract did not affect the soluble sugar levels. Interestingly, bamboo extracts affected the lactic acid fermentation and ripening, resulting in the increase of lactic acid in bamboo extract treatment. Number of total bacterial cell of additive group is higher than control one, probably due to the stimulative effect of bamboo extract on bacterial growth. Level of lactic acid bacteria was also higher in the additive group, thus, it is considered that bamboo extract appeared to enhance the proliferation of lactic acid bacteria. The acceptability of treated Kimchi was higher in general. And results of intensity evaluation in color and texture were higher as well by addition of bamboo extract.

Silage preparation and fermentation quality of natural grasses treated with lactic acid bacteria and cellulase in meadow steppe and typical steppe

  • Hou, Meiling;Gentu, Ge;Liu, Tingyu;Jia, Yushan;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.788-796
    • /
    • 2017
  • Objective: In order to improve fermentation quality of natural grasses, their silage preparation and fermentation quality in meadow steppe (MS) and typical steppe (TS) were studied. Methods: The small-scale silages and round bale silages of mixed natural grasses in both steppes were prepared using the commercial lactic acid bacteria (LAB) inoculants Chikuso-1 (CH, Lactobacillus plantarum) and cellulase enzyme (AC, Acremonium cellulase) as additives. Results: MS and TS contained 33 and 9 species of natural grasses, respectively. Stipa baicalensis in MS and Stipa grandi in TS were the dominant grasses with the highest dry matter (DM) yield. The crude protein (CP), neutral detergent fiber and water-soluble carbohydrate of the mixed natural grasses in both steppes were 8.02% to 9.03%, 66.75% to 69.47%, and 2.02% to 2.20% on a DM basis, respectively. All silages treated with LAB and cellulase were well preserved with lower pH, butyric acid and ammonia-N content, and higher lactic acid and CP content than those of control in four kinds of silages. Compared with CH- or AC-treated silages, the CH+ AC-treated silages had higher lactic acid content. Conclusion: The results confirmed that combination with LAB and cellulase may result in beneficial effects by improving the natural grass silage fermentation in both grasslands.