• Title/Summary/Keyword: lactic bacteria strain

Search Result 385, Processing Time 0.023 seconds

Heme Derived from Corynebacterium glutamicum: A Potential Iron Additive for Swine and an Electron Carrier Additive for Lactic Acid Bacterial Culture

  • Choi, Su-In;Park, Jihoon;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.500-506
    • /
    • 2017
  • To investigate the potential applications of bacterial heme, aminolevulinic acid synthase (HemA) was expressed in a Corynebacterium glutamicum HA strain that had been adaptively evolved against oxidative stress. The red pigment from the constructed strain was extracted and it exhibited the typical heme absorbance at 408 nm from the spectrum. To investigate the potential of this strain as an iron additive for swine, a prototype feed additive was manufactured in pilot scale by culturing the strain in a 5 ton fermenter followed by spray-drying the biomass with flour as an excipient (biomass: flour = 1:10 (w/w)). The 10% prototype additive along with regular feed was supplied to a pig, resulting in a 1.1 kg greater increase in weight gain with no diarrhea in 3 weeks as compared with that in a control pig that was fed an additive containing only flour. To verify if C. glutamicum-synthesized heme is a potential electron carrier, lactic acid bacteria were cultured under aerobic conditions with the extracted heme. The biomasses of the aerobically grown Lactococcus lactis, Lactobacillus rhamosus, and Lactobacillus casei were 97%, 15%, and 4% greater, respectively, than those under fermentative growth conditions. As a potential preservative, cultures of the four strains of lactic acid bacteria were stored at $4^{\circ}C$ with the extracted heme and living lactic acid bacterial cells were counted. There were more L. lactis and L. plantarum live cells when stored with heme, whereas L. rhamosus and L. casei showed no significant differences in live-cell numbers. The potential uses of the heme from C. glutamicum are further discussed.

In vivo Antimutagenicity of Dadih Probiotic Bacteria towards Trp-P1

  • Surono, Ingrid S.;Pato, Usman;Koesnandar, Koesnandar;Hosono, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.119-123
    • /
    • 2009
  • In vitro acid- and bile-tolerant lactic acid bacteria isolated and identified from Indonesian traditional fermented milk dadih might be considered as potential probiotic strains after further characterization with animal models, especially for their therapeutic properties. Five dadih lactic bacteria isolates each had moderate survival rate for 2 h at pH 2.0, as well as bile tolerance. The aim of this research was to identify candidate probiotic lactic bacteria among indigenous dadih lactic isolates originated from Bukit Tinggi, West Sumatra, especially their in vivo antimutagenic property. Milk cultured with Enterococcus faecium IS-27526 significantly lowered fecal mutagenicity of rats as compared to the control group, skim milk, and milk cultured with L. plantarum IS-20506. These results suggest that Enterococcus faecium IS-27526 may serve as a potential probiotic strain with its antimutagenicity.

Screening and Characterization of Probiotic Strains for Prevention of Bacterial Fish Diseases (어류의 세균성 질병 예방을 위한 Probiotic균주의 선발 및 특성)

  • 허문수;양병규;전유진
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.129-134
    • /
    • 2003
  • The purpose of the present study was to screen the effective of lactic acid bacteria (LAB) as probiotics, which are able to protect aquacultural fish pathogenic bacteria, and investigate their characterization. Twenty strains of lactic acid bacteria were isolated from fish intestine, fermented fish foods and kimchis. These bacteria were screened for antagonistic activity against fish pathogenic bacteria. Seven tested LAB strains were able to inhibit the fish pathogenic bacteria, including Vibrio anguillarum, Edwardsiella tarda, and Streptococcus sp.. Of the probiotic candidates, BK19 strain isolated from fermented pollack viscera indicated the largest inhibition activity. Moreover, this strain showed a resistance over low pH and antibiotic agents. Therefore this probiotic candidate BK19 was finally selected and identified as a probiotic strain. This particular probiotic bacteria was identified as Lactobacillus sakei BK19 by biochemical characteristics and 165 rRNA PCR amplification.

Isolation and Identification of Lactic Acid Bacteria from Commercial Kimchi (시판김치로부터 젖산균의 분리 및 동정)

  • Ko, Jung-Lim;Oh, Chang-Kyung;Oh, Myung-Cheol;Kim, Soo-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.6
    • /
    • pp.732-741
    • /
    • 2009
  • This study was carried out to identify lactic acid bacteria isolated from commercial Kimchi. Twelve lactic acid bacteria strains were isolated from Chinese cabbage kimchi (Baechu kimchi) that was fermented for 4 days at room temperature after making kimchi, 6 strains from pickled ponytail radishes (Chongkak kimchi) that was fermented for 2 days, and 15 strains in radish cube kimchi (Kaktugi) that was fermented for 5 days, and 23 strains were isolated in pickled Wakegi (Pa kimchi) that was fermented for 4 days. Eight strains among the lactic acid bacteria of 12 strains isolated from Baechu kimchi (pH 4.0) were identified as Lactobacillus plantarum, 1 strain as Leuconostoc lactis, 2 strains as Lactobacillus casei subsp. pseudoplantarum, and 1 strain as Lactobacillus sake. Three strains among the lactic acid bacteria of 6 strains isolated from Chongkak kimchi (pH 4.5) were identified as Leuconostoc paramesenteroides, 2 strains as Leuconostoc mesenteroides subsp. mesenteroides, and 1 strain as Lactobacillus plantarum. Two strains among the 15 strains isolated in Kaktugi (pH 4.0) were identified as Leuconostoc lactis, 3 strains as Leuconostoc mesenteroides subsp dextranicum, 4 strains as Lactobacillus casei subsp. pseudoplantarum, and 4 strains as Lactobacillus coryniformis subsp. torquens. Twenty-two strains among the 23 strains isolated from Pa kimchi (pH 4.1) identified as L. plantarum and 1 strain was as Lactobacillus sake. From the results above, the dominant species of Baechu kimchi was confirmed as L. plantarum, Chongkak kimchi as L. paramesenteroides, Kaktugi as L. casei subsp. pseudoplantarum and L. coryniformis subsp. torquens, and Pa kimchi as L. plantarum.

Isolation and Characterization of Lactic Acid Bacteria Producing Antimutagenic Substance from Korean Kimchi (김치로부터 항돌연변이 물질을 생산하는 유산균의 분리 및 특성)

  • Rhee, Chang-Ho;Park, Heui-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 1999
  • Various lactic acid bacteria were isolated from Korean Kimchi in order to study their antimutagenic substances. Ames test using Salmonella typhimurium TA98 and TA100 showed the strain KLAB21 to have the highest antimutagenic activity among the 230 isolated strains against MNNG (N-methyl-N'-nitro-N-nitrosoguanidine), NPD (4-nitro-O-phenylenediamine), NQO (4-nitrosoquinoline-1-oxide) and AFB1 (aflatoxin B1). The strain was identified as Lactobacillus plantarum based on its morphological, cultural and physiological characteristics. Antimutagenic activity of L. plantarum KLAB21 was found in culture supernatant suggesting the bacterium secrete antimutagenic substance in the media. No mutagenic activity was found in the culture supernatant. The isolated strain L. plantarum KLAB21 showed much higher antimutagenic activity than L. plantarum IAM1261 which is being used industrially for fermented milk production. The antimutagenic activity of L.plantarum KLAB21 was reconfirmed by the spore-rec assay using spores of Bacillus subtilis H17($Rec^+$) and M45($Rec^-$).

  • PDF

Production of Lactic Acid by Lactic Acid Bacteria Isolated from Shellfish (패류로부터 분리된 젖산균에 의한 젖산의 생산)

  • Kang, Chang-Ho;Jung, Ho Geon;Koo, Ja-Ryong;So, Jae-Seong
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.161-165
    • /
    • 2015
  • Lactic acid and its derivatives are widely used in the food, pharmaceutical, and cosmetic industries. It is also a major raw material for the production of poly-lactic acid (PLA), a biodegradable and environmentally friendly polymer and a possible alternative to synthetic plastics derived from petroleum. For PLA production by new strains of lactic acid bacteria (LAB), we screened LAB isolates from shellfish. A total of 51 LAB were isolated from 7 types of shellfishes. Lactic acid production of individual isolates was examined using high-performance liquid chromatography using a Chiralpak MA column and an ultraviolet detector. Lactobacillus plantarum T-3 was selected as the most stress-resistant strain, with minimal inhibition concentrations of 1.2 M NaCl, 15% ethanol, and 0.0020% hydrogen peroxide. In a 1 L fermentation experiment, $\small{D}$-lactic acid production of 19.91 g/L fermentation broth was achieved after 9 h cultivation, whereas the maximum production of total lactic acid was 41.37 g/L at 24 h.

Toxic Effect of Endocrine Disruptors on the Growth Rate of Lactic Acid Bacteria

  • Kim Su Won;Kim Jin Sik;Ryu Hye Myung;Nam Jin Sik;Cheigh Hong Sik;Min Byung Tae;Park Soo Hyun;Yoo Min
    • Biomedical Science Letters
    • /
    • v.10 no.4
    • /
    • pp.403-406
    • /
    • 2004
  • Environmental endocrine disruptors (EDs) are toxic, hormone-like chemicals which can be found in our normal daily life. We have examined if EDs can inhibit the monocellular microorganisms such as lactic acid bacteria or if the growth of lactic acid bacteria could be resistant to the endocrine disruptors. We have used Lactobacillus paracasei subsp. paracasei (KCTC No. 3165) as an experimental strain and bisphenol A, benzophenone and phenylphenol for the comparison purpose. Experiments included the evaluation of turbidity, absorbance and actual cell counts. We found that No.3165 was somewhat resistant to EDs naturally, however, high concentration of EDs could inhibit the growth of No. 3165 completely. Different EDs showed different spectrum of inhibit. This study should contribute to the development of more resistant lactic acid bacteria to EDs and to the development of functional fermented beverage.

  • PDF

Probiotic Properties of Lactic Acid Bacteria and Yeasts Isolated from Korean Traditional Food, Jeot-gal (젓갈로부터 분리된 젖산균 및 효모의 프로바이오틱 특성)

  • Kim Seon-Jae;Ma Seung-Jin;Kim Hag-Lyeol
    • Food Science and Preservation
    • /
    • v.12 no.2
    • /
    • pp.184-189
    • /
    • 2005
  • In order to select probiotics having both a high survival rate and an ability to inhibit virulent pathogens, we have screened lactic acid bacteria and yeasts from Jeot-gal to examine their resistance to artificial gastric and bile juice. After being introduced in the artificial gastric acid for 2 hr, the isolated lactic acid bacteria and yeast were incubated for 24 hrs in the artificial bile juice. In particular, the strain ML 36, ML 128, and ML 178 survived the longest during 2 hr incubation period in the artificial gastric acid. All 3 strains of lactic acid bacteria, and 2 strains of yeast demonstrated higher growth rates than control in the artificial bile. In addition, the antimicrobial activity of lactic acid bacteria and yeasts was investigated to determine their efficiency as probiotic organisms. The lactic acid bacteria inhibited Gram positive and negative bacteria, while the yeast was marginally inhibited.

In vitro selection of lactic acid bacteria for probiotic use in pig (양돈용 생균제 균주개발을 위한 유산균주 선발)

  • Ryu, Ji-Sook;Han, Sun-Kyung;Shin, Myeong-Soo;Lee, Wan-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.1
    • /
    • pp.33-41
    • /
    • 2009
  • In order to develop probiotic strain for pigs, Lactobacillus spp. (527 isolates), Streptococcus spp. (95 isolates) and Bifidobacterium spp. (25 isolates) were isolated from the feces of 35 pigs. These isolates were tested through in vitro experiment such as acid tolerance at pH 2.0 (Lactobacillus spp. and Streptococcus spp.) or pH 3.0 (Bifidobacterium spp.), bile tolerance in MRS broth containing 0.3% (w/v) Oxgall, heat resistance at $70^{\circ}C$ and $80^{\circ}C$ for 5 min, antibiotic resistance, antimicrobial activity against pathogenic bacteria and Caco-2 cell adherence assay. Finally ten most superior strain (5 Lactobacillus spp. strain, 3 Bifidobacterium spp. strain and 2 Streptococcus spp. strain) were selected as potential candidate for probiotic use in pig industry. It could be used as an alternative to antibiotics in feed additives.

Seaweed Fermentation and Probiotic Properties of Lactic Acid Bacteria Isolated from Korean Traditional Foods (전통식품 유래 유산균의 해조류 발효 및 Probiotic 특성)

  • Kim, Jin-Hak;Park, La-Young;Lee, Shin-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.10
    • /
    • pp.1481-1487
    • /
    • 2016
  • Lactic acid bacteria showing alginate-degrading and cellulolytic activity were isolated and identified as a starter for seaweed fermentation. A total of 331 strains of lactic acid bacteria isolated from various Korean traditional foods, such as Kimchi, Jeotgal, and Makgeolli, were examined alginate-degrading and cellulolytic activity by the plate assay method. Six strains showed strong alginate-degrading and cellulolytic activity among the isolated 331 strains. Among these six strains, four strains (strain No. 162, 164, 192, and 196) showed probiotic properties (antimicrobial activity, tolerance to simulated gastric juice, artificial bile acid, and NaCl). No. 192 strain (Gram-positive cocci, catalase negative, and homofermentative) showed the best probiotic properties among selected strains and was identified as Enterococcus faecium by 16S rRNA sequencing. Strain No. 192 (E. faecium) showed the best growth and antioxidative activity during seaweed (sea mustard and sea tangle) fermentation for 72 h at $37^{\circ}C$ among the four selected strains.