Browse > Article
http://dx.doi.org/10.7841/ksbbj.2015.30.4.161

Production of Lactic Acid by Lactic Acid Bacteria Isolated from Shellfish  

Kang, Chang-Ho (Department of Biological Engineering, Inha University)
Jung, Ho Geon (Department of Biological Engineering, Inha University)
Koo, Ja-Ryong (Department of Biological Engineering, Inha University)
So, Jae-Seong (Department of Biological Engineering, Inha University)
Publication Information
KSBB Journal / v.30, no.4, 2015 , pp. 161-165 More about this Journal
Abstract
Lactic acid and its derivatives are widely used in the food, pharmaceutical, and cosmetic industries. It is also a major raw material for the production of poly-lactic acid (PLA), a biodegradable and environmentally friendly polymer and a possible alternative to synthetic plastics derived from petroleum. For PLA production by new strains of lactic acid bacteria (LAB), we screened LAB isolates from shellfish. A total of 51 LAB were isolated from 7 types of shellfishes. Lactic acid production of individual isolates was examined using high-performance liquid chromatography using a Chiralpak MA column and an ultraviolet detector. Lactobacillus plantarum T-3 was selected as the most stress-resistant strain, with minimal inhibition concentrations of 1.2 M NaCl, 15% ethanol, and 0.0020% hydrogen peroxide. In a 1 L fermentation experiment, $\small{D}$-lactic acid production of 19.91 g/L fermentation broth was achieved after 9 h cultivation, whereas the maximum production of total lactic acid was 41.37 g/L at 24 h.
Keywords
Lactic acid bacteria; Poly-lactic acid; Isolation; Fermentation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ozeki, E. (1996) Characteristics of poly (L-lactide) as biodegradable plastics. Shimadzu Rev. 53: 1-8.
2 Anonymous. (1999) Resins report. pp.72-80. In: Modern Plastics, McGraw-Hill Co, NY, USA.
3 Datta, R., and M. Henry (2006) Lactic acid: recent advances in products, processes and technologies - A review. J. Chem. Technol. Biotechnol. 81: 1119-1129.   DOI
4 Anuradha, R., A. K. Suresh, and K. V. Venkatesh (1999) Simultaneous saccharification and fermentation of starch to lactic acid. Process. Biochem. 35: 367-375.   DOI
5 Vishnu, C., G. Seenayya, and G. Reddy (2000) Direct conversion of starch to L (+) lactic acid by amylase producing Lactobacillus amylophilus GV6. Bioprocess. Biosyst. Eng. 23: 155-158.   DOI
6 Rojan, P. J., K. M. Nampoothiri, A. S. Nair, and A. Pandey (2005) L(+)-lactic acid production using Lactobacillus casei in solid-state fermentation. Biotechnol. Lett. 27: 1685-1688.   DOI
7 Rojan, P. J., G. S. Anisha, K. M. Nampoothiri, and A. Pandey (2009) Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnol. Adv. 27: 145-152.   DOI
8 Gerhardt, P., R. G. E. Murray, W. A. Wood, and N. R. Krieg (1994) Methods for general and Molecular Bacteriology. pp. 31-32. American Society for Microbiology, Washington DC, USA.
9 Cappuccino, J. G. and N. Sherman (1992) Biochemical activities of microorganisms. In: Microbiology, A Laboratory Manual. 2nd ed., pp. 125. The Benjamin Cummings Publishing Company, San Francisco, CA, USA.
10 Ruoff, K. L. (1993) The genus Streptococcus-medical. In: The Prokaryotes. 2nd ed., pp. 1450. Springer, New York, NY, USA.
11 Ghanbari, M., M. Jami, K. J. Domig, and W. Kneifel (2013) Seafood biopreservation by lactic acid bacteria - A review. LWT-Food Sci. Technol. 54: 315-324.   DOI
12 Sobrun, Y., A. Bhaw-Luximon, D. Jhurry, and D. Puchooa (2012) Isolation of lactic acid bacteria from sugar cane juice and production of lactic acid from selected improved strains. Adv. Biosci. Biotechnol. 3: 398-407.   DOI
13 Tannock, G. W. (1988) The normal microflora: new concepts in health promotion. Microbiol. Sci. 5: 4-8.
14 Nikoskelainen, S., A. Ouwehand, G. Bylund, S. Salminen, and E. M. Lilius (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol. 15: 443-452.   DOI
15 Stortz, G. and R. Hengge-Aronis (2000) Bacterial Stress Responses. pp. 485. American Society for Microbiology Press, Washington DC, USA.
16 Mergeay, M. (2000) Bacteria adapted to industrial biotopes: Metalresistant ralstonia. pp.403-414. In: G. Storz, and R. Hengge-Aronis (eds.). Bacterial stress responses. American Society for Microbiology Press, Washington DC, USA.
17 Hofvendahl, K. and B. Hahn-Hagerdal (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26: 87-107.   DOI
18 Vescovo, M., S. Torriani, F. Dellaglio, and V. Bottazzi (1993) Basic characteristics, ecology and application of Lactobacillus plantarum: A review. Ann. Microbiol. Enzymol. 43: 261-284.
19 Daeschel, M. A. and I. F. Nes (1995) Lactobacillus plantarum: physiology, genetics, and applications in foods. In: Y. H. Hui, and G. G. Khachatourians (eds.). Food Biotechnology: Microorganisms. VCH Publishers, Inc., New York, NY, USA.
20 McDonald, L. C., H. P. Fleming, and H. M. Hassan (1990) Acid Tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl. Environ. Microbiol. 56: 2120-2124.
21 Takaaki, T., M. Hoshina, S. Tanabe, K. Sakai, S. Ohtsubo, and M. Taniguchi (2006) Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour. Technol. 92: 211-217.
22 Buchta, K. (1983) Lactic acid. In: H. J. Rehm, and G. Reed (eds.). Biotechnology. VCH Publishers, Inc., New York, NY, USA.
23 Yun, J. S., Y. J. Wee, and H. W. Ryu (2003) Production of optically pure L(+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1. Enzyme Microb. Technol. 33: 416-423.   DOI
24 Goncalves, L. M. D., A. N. R. B. Xavier, J. S. Almanda, and M. J. T. Corronodo (1991) Concomitant substrate and product inhibition kinetics in lactic acid production. Enzyme Microb. Technol. 13: 314-319.   DOI