• Title/Summary/Keyword: lactic acid cultures

Search Result 169, Processing Time 0.027 seconds

Effects of Methionine Supplemented to Soy Milk on Growth and Acid Production by Lactic Acid Bacteria (두유(豆乳)에 첨가된 Methionine이 유산균의 생육과 산생성에 미치는 영향)

  • Ko, Young-Tae
    • Applied Biological Chemistry
    • /
    • v.30 no.1
    • /
    • pp.17-23
    • /
    • 1987
  • Soy milk prepared from soy protein concentrate was fermented with each of the following lactic acid bacteria: Lactobacillus acidophilus KFCC 12731, L. acidophilus AKU 1122, L. bulgaricus, L. casei, Leuconostoc mesenteroides and Streptococcus lactis. The effects of methionine supple mented to soy milk on the growth and acid production by each organism. were investigated. L-methionine reduced the acid production by two strains of L. acidophilus while it had no apparent. effects on the other test cultures. The inhibitory effects of L-methionine on L. acidophilus KFCC 12731 was greater than on L. acidophilus AKU 1122. The acid production by L. acidophilus KFCC 12731 was also reduced substantially by DL-methionine supplemented to soy milk while it was not affected by D-methionine. Supplementation of L-cysteine to soy milk resulted in slight reduction of acid production by L. acido philus KFCC 12731.

  • PDF

Effects of Sweeteners and Enzyme Treatments on the Quality Attributes of Soy Yogurt Containing Soy Protein Isolate (당의 종류와 호소처리가 분리대두단백으로 제조한 대두요구르트의 품질특성에 미치는 영향)

  • 이숙영;오경남
    • Korean journal of food and cookery science
    • /
    • v.15 no.1
    • /
    • pp.73-80
    • /
    • 1999
  • This study was carried out to investigate the effects of enzyme treatments on the functional properties of soy protein isolate (SPI) and to examine the quality attributes of soy yogurt prepared by different enzyme treatments, sweeteners and starter cultures. Enzyme treatment increased the solubility and emulsifying capacity of soy proteins, but decreased the emulsifying stability; the enzymatic activity of ${\alpha}$-chymotrypsin was higher than that of trypsin. Enzyme treatments decreased the pH of soy yogurts prepared by both culture methods, the culture of L. bulgaricus and S. thermophilus and the culture of L. bulgaricus and K. fragilis, but increased the titratable acidity, total numbers of lactic acid bacteria and yeast. Trypsin was more effective than ${\alpha}$-chymotrypsin in decreasing pH and increasing titratable acidity and total numbers of lactic acid bacteria and yeast. Fructose decreased the pH of soy yogurts more than sucrose in the culture of L. bulgaricus and S. thermophilus, and vice versa in the culture of L. bulgaricus and K. fragilis. Fructooligosaccharides were more effective in the culture of L. bulgaricus and K. fragilis than in the culture of L. bulgaricus and S. thermophilus in increasing the titratable acidity, total count of lactic acid bacteria and yeast. In sensory evaluation, soy yogurts containing trypsin treated SPI, fructose and fructooligosaccharides (75%:25%) were more acceptable than those containing untreated or trypsin treated SPI and fructose. This was because of more smooth and less sour, in which the values of pH, titratable acidity, microbial growth, and viscosity were in the range of commercial yogurts. Soy yogurts fermented by L. bulgaricus and K. fragilis showed more smooth mouthfeel than those fermented by L. bulgaricus and S. thermophilus.

  • PDF

Effects of Lactic Acid Bacteria on intestinal Microbial Enzyme Activity and Composition in Rats Treated with Azoxymethane

  • Sang-Myeong;Lee, Wan-Kyu
    • Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.154-161
    • /
    • 2001
  • In recent years, colon cancer has been reported to be one of the most important causes of cancer morbidity and mortality in Korea. Epidemiological and experimental studies suggest that lactic acid bacteria (LAB) used to ferment dairy products inhibits colon carcinogenesis. The present study was designed to determine whether the colon cancer inhibitory effect of LAB (Bifidobacterium longum Hy8001; Bif and Lactobacillus acidophilus HY2l04; Lac) of Korean origin, is associated with intestinal microflora composition and certain enzyme activity in rats treated with azoxymethane (AOM). At five weeks of age, SD rats were divided at random into four (AOM alone, Bif, Lac, and Bif+Lac) groups. Oral administration of lactic acid bacteria cultures were performed daily until the termination of the study. Two weeks later all animals were given a subcutaneous injection of AOM dissolved in normal saline at a dose of 15 mg/kg of body weight once weekly for 2 weeks. Every two weeks for 10 weeks, five of the rats in each group were randomly chosen for fecal specimen collection. The fecal specimens were used for assay of $\beta$-glucuronidase and nitroreductase, and analysis of intestinal microflora composition. The activity of $\beta$-glucuronidase which plays an important role in the production of the carcinogenic metabolite of azoxymethane was remarkably increased in the AOM alone group after AOM injection and maintained the high level during the experiment. However, LAB inhibited the AOM-induced increase in $\beta$-glucuronidase activity. Nitroreductase activity decreased by 30-40% in LAB treated groups in comparison with that of the AOM alone group. The results of the present study suggest that LAB inhibits colon carcinogenesis by modulating the metabolic activity of intestinal micro-flora and improving the composition of intestinal microflora.

  • PDF

Identification of Lactic Acid Bacteria in Galchi- and Myeolchi-Jeotgal by 16S rRNA Gene Sequencing, MALDI-TOF Mass Spectrometry, and PCR-DGGE

  • Lee, Yoonju;Cho, Youngjae;Kim, Eiseul;Kim, Hyun-Joong;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1112-1121
    • /
    • 2018
  • Jeotgal is a Korean traditional fermented seafood with a high concentration of salt. In this study, we isolated lactic acid bacteria (LAB) from galchi (Trichiurus lepturus, hairtail) and myeolchi (Engraulis japonicas, anchovy) jeotgal on MRS agar and MRS agar containing 5% NaCl (MRS agar+5% NaCl), and identified them by using 16S rRNA gene sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as culture-dependent methods. We also performed polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) as a culture-independent method to identify bacterial communities. Five samples of galchi-jeotgal and seven samples of myeolchi-jeotgal were collected from different regions in Korea. A total of 327 and 395 colonies were isolated from the galchi- and myeolchi-jeotgal samples, respectively. 16S rRNA gene sequencing and MALDI-TOF MS revealed that the genus Pediococcus was predominant on MRS agar, and Tetragenococcus halophilus on MRS agar+5% NaCl. PCR-DGGE revealed that T. halophilus, Tetragenococcus muriaticus, and Lactobacillus sakei were predominant in both types of jeotgal. T. halophilus was detected in all samples. Even though the same species were identified by both culture-dependent and -independent methods, many species identified by the culture-dependent methods were not in the bacterial list identified by the culture-independent methods. The distribution of bacteria in galchi-jeotgal was more diverse than in myeolchi-jeotgal. The diverse LAB in galchi- and myeolchi-jeotgals can be further studied as candidates for starter cultures to produce fermented foods.

Improved Production of Live Cells of Lactobacillus rhamnosus by Continuous Cultivation using Glucose-yeast Extract Medium

  • Ling Liew Siew;Mohamad Rosfarizan;Rahim Raha Abdul;Wan Ho Yin;Ariff Arbakariya Bin
    • Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.439-446
    • /
    • 2006
  • In this study, the growth kinetics of Lactobacillus rhamnosus and lactic acid production in continuous culture were assessed at a range of dilution rates $(0.05 h^{-1}\;to\;0.40h^{-1})$ using a 2L stirred tank fermenter with a working volume of 600ml. Unstructured models, predicated on the Monod and Luedeking-Piret equations, were employed to simulate the growth of the bacterium, glucose consumption, and lactic acid production at different dilution rates in continuous cultures. The maximum specific growth rate of L. rhamnosus, ${\mu}_{max}$, was estimated at $0.40h^{-1}$I, and the Monod cell growth saturation constant, Ks, at approximately 0.25g/L. Maximum cell viability $(1.3{\times}10^{10}CFU/ml)$ was achieved in the dilution rate range of $D=0.28h^{-1}\;to\;0.35h^{-1}$. Both maximum viable cell yield and productivity were achieved at $D=0.35h^{-1}$. The continuous cultivation of L. rhamnosus at $D=0.35h^{-1}$ resulted in substantial improvements in cell productivity, of 267% (viable cell count) that achieved via batch cultivation.

Physicochemical and Microbiological Characterization of Protected Designation of Origin Ezine Cheese: Assessment of Non-starter Lactic Acid Bacterial Diversity with Antimicrobial Activity

  • Uymaz, Basar;Akcelik, Nefise;Yuksel, Zerrin
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.804-819
    • /
    • 2019
  • Ezine cheese is a non-starter and long-ripened cheese produced in the Mount of Ida region of Canakkale, Turkey, with a protected designation of origin status. Non-starter lactic acid bacteria (NSLAB) have a substantial effect on the quality and final sensorial characteristics of long-ripened cheeses. The dominance of NSLAB can be attributed to their high tolerance to the hostile environment in cheese during ripening relative to many other microbial groups and to its ability to inhibit undesired microorganisms. These qualities promote the microbiological stability of long-ripened cheeses. In this study, 144 samples were collected from three dairies during the ripening period of Ezine cheese. Physicochemical composition and NSLAB identification analyses were performed using both conventional and molecular methods. According to the results of a 16S rRNA gene sequence analysis, 13 different species belonging to seven genera were identified. Enterococcus faecium (38.42%) and E. faecalis (18.94%) were dominant species during the cheese manufacturing process, surviving 12 months of ripening together with Lactobacillus paracasei (13.68%) and Lb. plantarum (11.05%). The results indicate that NSLAB contributes to the microbiological stability of Ezine cheese over 12 months of ripening. The isolation of NSLAB with antimicrobial activity, potential bacteriocin producers, yielded defined collections of natural NSLAB isolates from Ezine cheese that can be used to generate specific starter cultures for the production of Ezine cheese (PDO).

Effects of Lactoferrin and Transferrin on the Growth of Lactococcus lactis subsp. cremoris FC (Lactococcus lactis subsp. cremoris FC에 대한 Lactoferrin과 Transferrin의 생장촉진효과)

  • Kim, Woan-Sub
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.196-201
    • /
    • 2017
  • Recent studies have reported that certain lactic acid bacteria and their metabolites, such as exopolysaccharides (EPSs), have immunological effects and can modulate the immune system following oral administration. Lactococcus lactis subsp. cremoris FC is a lactic acid bacteria isolated from fermented milk from Caucasians and has been shown to produce EPSs. In this study, the effects of lactoferrins (apo-lactoferrin, holo-lactoferrin, and native-lactoferrin) and transferrins (apo-transferrin and holo-lactoferrin) on the growth of L. lactis subsp. cremoris FC were examined. The addition of lactoferrins and transferrins to L. lactis subsp. cremoris FC cultures was found to be effective at concentrations of 0.5 or 1 mg/mL.

A Synergistic Effect of Chitosan and Lactic Acid Bacteria on the Control of Cruciferous Vegetable Diseases

  • Lin, Yu-Chen;Chung, Kuang-Ren;Huang, Jenn-Wen
    • The Plant Pathology Journal
    • /
    • v.36 no.2
    • /
    • pp.157-169
    • /
    • 2020
  • Two lactic acid bacteria (LAB) designated J02 and J13 were recovered from fermented vegetables based on their ability to suppress soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) on radish. J02 and J13 were identified as Lactobacillus pentosus and Leuconostoc fallax, respectively. The ability of J02 and J13 to suppress plant diseases is highly dependent on chitosan. LAB alone has no effect and chitosan alone has only a moderate effect on disease reduction. However, J02 or J13 broth cultures plus chitosan display a strong inhibitory effect against plant pathogens and significantly reduces disease severity. LAB strains after being cultured in fish surimi (agricultural waste) and glycerol or sucrose-containing medium and mixed with chitosan, reduce three cruciferous vegetable diseases, including cabbage black spot caused by Alternaria brassicicola, black rot caused by Xanthomonas campestris pv. campestris, and soft rot caused by Pcc. Experimental trials reveal that multiple applications are more effective than a single application. In-vitro assays also reveal the J02/chitosan mixture is antagonistic against Colletotrichum higginsianum, Sclerotium rolfsii, and Fusarium oxysporum f. sp. rapae, indicating a broad-spectrum activity of LAB/chitosan. Overall, our results indicate that a synergistic combination of LAB and chitosan offers a promising approach to biocontrol.

Lactic Acid Fermentation of Soymilk by Mixed Cultures of Lactobacillus acidophilus and Saccharomyces uvarum (두유에서 Sacchasomyces uvarum 과 Lactobacillus acidophilus의 혼합배양)

  • Kong, In-Soo;Lee, Jung-Soo;Chung, Yong-Joon;Lew, In-Deok;Oh, Doo-Whan;Yu, Ju-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.355-360
    • /
    • 1987
  • Among the several lactic acid bacteria, Lactobacillus acidophilus showed the highest acid production when it was cultured mixed with Sacchasomyces uvarum in soymilk. The highest acid production was obtained in 16 hrs of cultivation when the inoculation ratio of L. acidophilus and S. uvarum was 2:1 and the temperature was $30{\sim}37^{\circ}C$. The acid production was greatly enhanced by the addition of 2.0% sucrose. However, skim milk was not stimulatory in mixed culture. During mixed culture in soymilk, acid production was affected by the enzymatic reaction of yeast.

  • PDF

Fermentation Characteristics of Starter Cultures in Lactose-Hydrolyzed Milk for the Elderly (유당분해 우유를 이용한 고령자용 요구르트 배양)

  • Oh, Sejong;Kim, Bum Keun;Chun, Yong-Gi;Park, Dong June
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.20-26
    • /
    • 2021
  • Lactase (β-galactosidase) is abundant in the small intestine during early childhood and gradually decreases with age. Lactic acid bacteria (LAB) present in yogurt could survive in the stomach, and lactase produced by these LAB can aid in lactose breakdown in the small intestine, thereby reducing lactose intolerance. This study aims to provide preliminary data for development of lactose-free yogurts for the elderly, and investigate the effect of lactose-hydrolyzed milk on the growth of starter cultures. The pH during yogurt fermentation using lactose-free milk was slightly higher at 2 and 4 h of incubation, but reached 4.5 at the end of incubation, similar to that of the yogurt prepared from regular milk. The number of viable cells of Streptococcus thermophilus reached 108 CFU/mL after 2 h of incubation and increased to 109 CFU/mL after 4 h of incubation. During yogurt fermentation, the viable cells of Lactobacillus species and Bifidobacterium longum did not affect lactose hydrolysis. Although lactose-hydrolyzed milk did not promote the growth of starter cultures, manufacturing yogurt with lactose-free milk could be beneficial for the intestinal health of lactose-sensitive elderly.