• Title/Summary/Keyword: lactic

Search Result 4,234, Processing Time 0.028 seconds

Comparison of the Rate of Demineralization of Enamel using Synthetic Polymer Gel (합성 폴리머 겔의 법랑질 탈회 속도 비교)

  • Lee, June-Hang;Shin, Jisun;Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.2
    • /
    • pp.190-199
    • /
    • 2019
  • $Carbopol^{(R)}$ 907 used as surface protecting agent in White's method is the one of the artificial caries lesion producing solution was discontinuing of production. New surface protecting material to substitute of $Carbopol^{(R)}$ 907 was required. The author prepared an artificial caries lesion producing solution as follows White's method with $Carbopol^{(R)}$ 907 and also another artificial caries lesion producing solution with $Carbopol^{(R)}$ $2050^{(R)}$. 96 flattened and polished enamel samples were immersed in a demineralizing solution of 0.1 mol/L lactic acid, 0.2% carboxyvinylpolymer and 50% saturated hydroxyapatite for 1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 18 and 20 days. All samples from each group were subjected to polarized microscopy observed and image analysis for measuring the lesion depth. From the review of polarized images, the artificial caries lesion producing solution using $Carbopol^{(R)}$ 907 and $Carbopol^{(R)}$ 2050 can produced an artificial caries that was very similar to natural caries characters. From the regression analysis of the lesion depth produced by the artificial caries lesion producing solution using $Carbopol^{(R)}$ 907 and $Carbopol^{(R)}$ 2050, $Carbopol^{(R)}$ 2050 estimate as Y = 9.8X + 8.0 and $Carbopol^{(R)}$ 907 was Y = 8.4X - 0.4. R square value of $Carbopol^{(R)}$ 2050 and $Carbopol^{(R)}$ 907 was 0.965 and 0.945 respectively. The rate of demineralization by the artificial caries lesion producing solution using $Carbopol^{(R)}$ 2050 was faster than that of $Carbopol^{(R)}$ 907. And R square value of $Carbopol^{(R)}$ 2050 and $Carbopol^{(R)}$ 907 were very high and it means that the lesion depth was very high coefficient to demineralization period.

Increased Anti-oxidative Activity and Whitening Effects of a Saposhnikovia Extract Following Bioconversion Fermentation using Lactobacillus plantarum BHN-LAB 33 (Lactobacillus plantarum BHN-LAB 33의 생물전환공정을 통한 방풍 발효 추출물의 항산화 활성 및 미백 활성 증대 효과)

  • Kim, Byung-Hyuk;Jang, Jong-Ok;Lee, Jun-Hyeong;Park, YeEun;Kim, Jung-Gyu;Yoon, Yeo-Cho;Jeong, Su Jin;Kwon, Gi-Seok;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1208-1217
    • /
    • 2019
  • Saposhnikovia has been used as a traditional medicinal herb in Asia because of the reported anti-inflammatory, anti-allergic rhinitis, pro-whitening, anti-atopy, anti-allergy, and anti-dermatopathy effects of the phytochemical compounds it contains. In this study, we investigated the antioxidant effects of a Saposhnikovia extract after fermentation by Lactobacillus plantarum BHN-LAB 33. Saposhnikovia powder was inoculated with L. plantarum BHN-LAB 33 and fermented at $37^{\circ}C$ for 72 hr. After fermentation, the total polyphenol content of the Saposhnikovia extract increased by about 14%, and the total flavonoid content increased by about 9%. The superoxide dismutase-like activities, DPPH radical scavenging, ABTS radical scavenging, reducing power activity, and tyrosinase inhibition activity also increased after fermentation by approximately 70%, 80%, 45%, 39%, and 44%, respectively. The results confirmed that fermentation of a Saposhnikovia extract by L. plantarum BHN-LAB 33 is an effective way to increase the antioxidant effects of the extract. The bioconversion process investigated in this study may have the potential to produce phytochemical-enriched natural antioxidant agents with high added value from Saposhnikovia matrices. These results can also be applied to the development of improved foods and cosmetic materials.

Manufacturing and Quality Characteristics of Puffed Black Bean Fermented by Lactobacillus plantarum Strains Isolated from Kimchi (김치 유래 Lactobacillus plantarum을 이용한 팽화 검은콩 발효물의 제조 및 품질특성)

  • Hwang, Un-Sik;Jeong, So-Yeon;Park, Soo-Yeon;Park, Mi-Sun;Kang, Min-Ji;You, Cheong-Bin;Seo, Hyun-Ji;Lee, Eun-Soo;Yun, Sang-Man;Park, Hoon;Suh, Hee-Jae
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.618-629
    • /
    • 2020
  • The purpose of this study was to optimize the fermentation condition of black bean by lactic acid bacteria (LAB) and to evaluate the quality characteristics of fermented black bean. Lactobacillus plantarum SU22 isolated from kimchi was selected as a starter for the fermentation of black bean because the strain exhibited strong antimicrobial activity against pathogenic bacteria and did not produce biogenic amines or a carcinogenic enzyme, β-glucuronidase. Fermentation was performed with broth containing puffed black bean (PBB) inoculated with 1% (v/v) of L. plantarum SU22 at 37℃ for 48h. The viable cell count of LAB was over 9 Log CFU/mL in PBB (20%) broth fermented with L. plantarum SU22. Fermentation of alcalase-treated PBB (20%) broth with L. plantarum SU22 was found to be the optimal condition, increasing viable cell count of LAB up to 10.30 Log CFU/mL. Under the optimal condition, the total polyphenol content (94.02 mg GAE/g) and DPPH radical scavenging activity (92.50%) were significantly increased, compared to non-fermented control (87.74 mg GAE/g, 83.14%).

Neuroprotective effect of fermented ginger extracts by Bacillus subtilis in SH-SY5Y cells (고초균에 의한 생강 발효 추출물의 신경세포 보호 효과)

  • Yang, Hee Sun;Kim, Mi Jin;Kim, Mina;Choe, Jeong-sook
    • Journal of Nutrition and Health
    • /
    • v.54 no.6
    • /
    • pp.618-630
    • /
    • 2021
  • Purpose: The ginger rhizome (Zingiber officinale) is widely cultivated as a spice for its aromatic and pungent components. One of its constituents, 6-hydroxydopamine (6-OHDA) is usually thought to cross the cell membrane through dopamine uptake transporters, and induce inhibition of mitochondrial respiration and the generation of intracellular reactive oxygen species (ROS). This study examines the neuroprotective effect and acetylcholinesterase (AChE) inhibitory activity of fermented ginger extracts (FGEs) on 6-OHDA induced toxicity in SH-SY5Y human neuroblastoma cells. Methods: Ginger was fermented using 2 species of Bacillus subtilis, with or without enzyme pretreatment. Each sample was extracted with 70% ethanol. Neurotoxicity was assessed by applying the EZ-Cytox cell viability assay and by measuring lactic dehydrogenase (LDH) release. Morphological changes of apoptotic cell nuclei were observed by Hoechst staining. Cell growth and apoptosis of SH-SY5Y cells were determined by Western blotting and enzyme activity analysis of caspase-3, and AChE enzymatic activity was determined by the colorimetric assay. Results: In terms of cell viability and LDH release, exposure to FGE showed neuroprotective activities against 6-OHDA stimulated stress in SH-SY5Y cells. Furthermore, FGE reduced the 6-OHDA-induced apoptosis, as determined by Hoechst staining. The occurrence of apoptosis in 6-OHDA treated cells was confirmed by determining the caspase-3 activity. Exposure to 6-OHDA resulted in increased caspase-3 activity of SH-SY5Y cells, as compared to the unexposed group. However, pre-treatment with FGE inhibited the activity of caspase-3. The neuroprotective effects of FGE were also found to be caspase-dependent, based on reduction of caspase-3 activity. Exposure to FGE also inhibited the activity of AChE induced by 6-OHDA, in a dose-dependent manner. Conclusion: Taken together, our results show that FGE exhibits a neuroprotective effect in 6-OHDA treated SH-SY5Y cells, thereby making it a potential novel agent for the prevention or treatment of neurodegenerative disease.

Anti-Hemolytic and Antimicrobial Effects against Multidrug-Resistant Bacteria of Enterococcus faecalis Isolated from Human Breast Milk (모유에서 분리한 Enterococcus faecalis의 다제내성 균에 대한 항용혈 및 항균 효과)

  • Yi, Eun-Ji;Lee, Jeong-eun;Jo, So-Yeon;Kim, Soo-bin;Yu, Du-na;Kook, Moochang;Kim, Ae Jung
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.519-527
    • /
    • 2021
  • In this study, the hemolysis of Enterococcus faecalis BMSE-HMP strains, isolated from human breast milk, was investigated, and the anti-hemolytic and antimicrobial effects on multidrug-resistant (MDR) bacteria were investigated. The enzyme activity of E. faecalis BMSE-HMP 4 strains was measured, and it was found that the activities of esterase and esterase lipase were the highest. In addition, no hemolytic reaction was observed in any of the isolates. Subsequently, the anti-hemolytic activity against MDR strains causing hemolysis was evaluated. E. faecalis BMSE-HMP002 had the highest anti-hemolytic activity against Staphylococcus aureus CCARM 3855 at 75.71 ± 10.00%. The anti-hemolytic activity against Escherichia coli DC 2 CCARM 0238 and Pseudomonas aeruginosa CCARM 0223 showed that the activity of BMSE-HMP001 was highest at 76.92 ± 2.99% and 87.93 ± 1.93%, respectively. Examination of the antimicrobial effects against the MDR bacteria Staphylococcus spp., Escherichia spp., Pseudomonas spp., Salmonella spp., Klebsiella spp., Enterobacter spp., and E. faecalis BMSE-HMP strains showed antimicrobial effects against both gram-positive and gram-negative strains. Breastfeeding delivers enterococci into the intestinal tract of newborns by lactation, and its usefulness is attracting attention as it has been reported that enterococci have a potential effect on neonatal immune development. In this study, the hemolytic and antimicrobial effects of E. faecalis BMSE-HMP strains on MDR bacteria were investigated, to confirm their potential as useful lactic acid bacteria. Additional studies on the antibiotic resistance and toxicity of the E. faecalis BMSE-HMP strains, isolated in this study, are necessary to prove it safe for use.

Anti-listeria Activity of Lactococcus lactis Strains Isolated from Kimchi and Characteristics of Partially Purified Bacteriocins (김치에서 분리한 Lactococcus lactis 균주의 항리스테리아 활성 및 부분 정제된 박테리오신의 특성)

  • Son, Na-Yeon;Kim, Tae-Woon;Yuk, Hyun-Gyun
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.2
    • /
    • pp.97-106
    • /
    • 2022
  • Listeria monocytogenes (L. monocytogenes) is one of gram-positive foodborne pathogens with a very high fatality rate. Unlike most foodborne pathogens, L. monocytogenes is capable of growing at low temperatures, such as in refrigerated foods. Thus, various physical and chemical prevention methods are used in the manufacturing, processing and distribution of food. However, there are limitations to the methods such as possible changes to the food quality and the consumer awareness of synthetic preservatives. Thus, the aim of this study was to evaluate the anti-listeria activity of lactic acid bacteria (LAB) isolated from kimchi and characterize the bacteriocin produced by Lactococcuslactis which is one of isolated strains from kimchi. The analysis on the anti-listeria activity of a total of 36 species (Lactobacillus, Weissella, Lactobacillus, and Lactococcus) isolated from kimchi by the agar overlay method revealed that L. lactis NJ 1-10 and NJ 1-16 had the highest anti-listeria activity. For quantitatively analysis on the anti-listeria activity, NJ 1-10 and NJ 1-16 were co-cultured with L. monocytogenes in Brain Heat Infusion (BHI) broth, respectively. As a result, L. monocytogenes was reduced by 3.0 log CFU/mL in 20 h, lowering the number of bacteria to below the detection limit. Both LAB strains showed anti-listeria activity against 24 serotypes of L. monocytogenes, although the sizes of clear zone was slightly different. No clear zone was observed when the supernatants of both LAB cultures were treated with proteinase-K, indicating that their anti-listerial activities might be due to the production of bacteriocins. Heat stability of the partially purified bacteriocins of NJ 1-10 and NJ 1-16 was relatively stable at 60℃ and 80℃. Yet, their anti-listeria activities were completely lost by 60 min of treatment at 100℃ and 15 min of treatment at 121℃. The analysis on the pH stability showed that their anti-listeria activities were the most stable at pH 4.01, and decreased with the increasing pH value, yet, was not completely lost. Partially purified bacteriocins showed relatively stable anti-listeria activities in acetone, ethanol, and methanol, but their activities were reduced after chloroform treatment, yet was not completely lost. Conclusively, this study revealed that the bacteriocins produced by NJ 1-10 and NJ 1-16 effectively reduced L. monocytogenes, and that they were relatively stable against heat, pH, and organic solvents, therefore implying their potential as a natural antibacterial substance for controlling L. monocytogenes in food.

Anti-stress and Sleep-enhancing Effects of Ptecticus tenebrifer Water Extract Through the Regulation of Corticosterone and Melatonin Levels (코르티코스테론 및 멜라토닌 수치 조절을 통한 동애등에 물 추출물의 항스트레스 및 수면 개선 효과)

  • Oh, Dool-Ri;Ko, Haeju;Hong, Seong Hyun;Kim, Yujin;Oh, Kyo-Nyeo;Kim, Yonguk;Bae, Donghyuck
    • Journal of Life Science
    • /
    • v.32 no.8
    • /
    • pp.601-610
    • /
    • 2022
  • P. tenebrifer (PT) belongs to the Diptera order and Stratiomyidae family. Recently, insect industry have been focused as food, animal feed and environmental advantages. γ-aminobutyric acid (GABA) and melatonin have been associated with regulating sleep and depression. GABA is the primary inhibitory neurotransmitter and is synthesized via biotransformation of monosodium glutamate (MSG) to GABA by lactic acid bacteria. In this study, we first used a GABA-enhanced PT extract, wherein GABA was enhanced by feeding MSG to PT. The underlying mechanisms preventing stress and insomnia were investigated in a corticosterone (CORT)-induced endoplasmic reticulum (ER) stress and chronic restraint stress (CRS)-exposed mouse model, as well as in pentobarbital (45 mg/kg)-induced sleep behaviors in mice. In the present study, the GABA peak was detected in high-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD) analysis and showed in Ptecticus tenebrifer water extract (PTW) but not in non-PTW extract. The results showed that PTW and Ptecticus tenebrifer with 70% ethanol extract (PTE) exerted neuroprotective effects by protecting against CORT-induced downregulation of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and cAMP-response element binding protein (CREB) expression. In addition, PTW (300 mg/kg) significantly reduced CORT levels in CRS-exposed mice. Furthermore, PTW (100 and 300 mg/kg) significantly reduced sleep latency and increased total sleep duration in pentobarbital (45 mg/kg)-induced sleeping behaviors, which was related to serum melatonin levels. In conclusion, our results suggest that PTW exerts anti-stress and sleep-enhancing effects by regulating serum CORT and melatonin levels.

Effects of Sowing and Harvesting Times on Feed Value and Functional Component of Triticale (x Triticosecale Wittmack) (트리티케일 파종시기 및 수확시기가 사일리지 사료가치와 기능성 성분에 미치는 영향)

  • Jisuk Kim;Kyungyoon Ra;Yul-Ho Kim;Myoung Ryoul Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.319-325
    • /
    • 2022
  • Triticale forage has the highest yield of all winter forage crops, including rye, and a cold tolerance within an average low temperature of -10℃ in January. Therefore, this study analyzed the effects of sowing and harvesting times on the feed value and functional components of triticale to optimize the use and supply of triticale as livestock fee Room temperature' can vary widely with climate, season, and time of day. In order to clearly state the conditions of the study in a manner that facilitates replication by other researchers, please consider using an approximate temperature range instead. Seeds of the triticale 'Joseong' were sown during the fall of 2021 (October 20th) and spring of 2022 (March 7th). The triticale was harvested at the following growth stages: seedling stage, booting stage, heading stage, 10 days after heading, and 20 days after heading. The moisture content of each harvested triticale was adjusted to approximately 60%, and the triticale was fermented for silage for 40 days at ambient temperature under anaerobic conditions. We measured the pH and organic acid content of each silage to determine the feed value and functional component. The lactic acid content of the triticale silage harvested at the seedling stage sown in both fall and spring (1.61%, 1.63%) was the highest among all the silages. The octacosanol content in the silages of both fall-sown and spring-sown triticale harvested at the seedling stage (0.38, 0.27 mg/ml) was the highest. Overall, the results revealed that harvesting time had a greater impact on the feed value and functional components of triticale silage than sowing time.

Comprehensive comparison of the primary and secondary metabolites and antioxidant activity of Polygoni multiflori Radix by processing methods (가공 방법에 따른 하수오의 영양성분 및 항산화 활성의 종합적인 비교)

  • Hee Yul Lee;Chung Eun Hwang;Kyung Pan Hwa;Du Yong Cho;Jea Gack Jung;Min Ju Kim;Jong Bin Jeong;Mu Yeun Jang;Kye Man Cho
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.287-298
    • /
    • 2022
  • This study investigated the changes in the physiochemical property, phytochemical content, nutritional content and antioxidant activity of Polygoni multiflori Radix by steam, aging, and fermentation. After processing Polygoni multiflori Radix (PMR), pH slightly decreased, while acidity increased (pH 5.70→4.78, acidity 0.23→0.29%). The reducing sugar content increased after aging and fermentation from 1.19 mg/g (PMR) to 1.40 (fermented PMR, FPMR), 1.30 (red PMR, RPMR), 1.53 (fermented red PMR, FRPMR), 1.99 (black PMR, BPMR), and 2.33 mg/g (fermented black PMR, FBPMR). Total phenolic content was highest in PMR (6.05 mg/g) and total flavonoids and maillard product were increased after aging and fermentation of PMR, and were the highest in BPMR (1.60 mg/g) and FBPMR (2.76 O.D.), respectively. The major phytochemical was 2,3,5,4'-tetrahydroxystilbene-2-0-α-glucoside, which were highest in PMR (64.9 mg/g) with 46.47 mg/g at FPMR, 33.94 mg/g at RPMR, 48.76 mg/g at FRPMR, 36.68 mg/g at BPMR and 34.35 mg/g at FBPMR. The main fatty acids and free amino acids were detected as palmitic acid (C16:0) and proline, respectively. Generally, 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical scavenging activities and FRAP reducing powers were shown high in PMR (39.06%, 98.32%, and 2.61 O.D. in extracts concentration 1.0 mg/mL), then were decreased after aging and fermentation.

Examination of Antioxidant and Immune-enhancing Functional Substances in Fermented Sea Cucumber (발효해삼의 항산화 및 면역강화 기능성 물질의 분석)

  • Sam Woong Kim;Ga-Hee Kim;Beom Cheol Kim;Lee Yu Bin;Lee Ga Bin;Sang Wan Gal;Chul Ho Kim;Woo Young Bang;Kyu Ho Bang
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.485-492
    • /
    • 2024
  • Sea cucumbers contain more than 50% protein in their solid content, and they also possess various bioactive substances such as saponins and mucopolysaccharides. This study analyzed the activities of various enzymes derived from Bacillus and lactic acid bacteria and determined to degrade the components of sea cucumbers. Among the analyzed strains, B. subtilis K26 showed the highest activities in protease and xylanase and relatively high activity in cellulase. Accordingly, samples of sea cucumber and water were mixed in equal proportions, sterilized, and then fermented by inoculating them with B. subtilis K26. Following this, a higher amino acid content was observed between 1.5 and 7.5 hr, a lower residual solid content in this time, and a lesser fermentation odor. The saponin content in fermented sea cucumber powder extracted with butanol was measured to be 1.12 mg/g. The chondroitin sulfate content was evaluated to be 5.11 mg/g in raw sea cucumber. The total polyphenol content, flavonoid content, and antioxidant activities were 6.95 mg gallic acid equivalent/g, 3.69 mg quercetin equivalent/g, and 3.69 mg quercetin equivalent/g in raw sea cucumber, respectively. Moreover, the DNA damage protective effect of fermented sea cucumber extract was found to be concentration-dependent, with a very strong effect at very low concentrations. Overall, we suggest that sea cucumber fermented with B. subtilis K26 has a high potential as a food for inhibiting oxidation, enhancing immunity, and improving muscle function in the human body thanks to its high free amino acid content.