• Title/Summary/Keyword: lacZ gene

Search Result 217, Processing Time 0.027 seconds

Deletion Analysis of Pichia PGK1 Promoter and Construction of an Episomal Vector for Heterologous Protein Expression in P. pastoris (Pichia PGK1프로모터의 분석과 P. pastoris에 있어 외래단백질발현을 위한 Episomal벡터의 제조)

  • Lee, Sung-Jae;Hong, In-Pyo;Baek, Seon-Yeol;Choi, Shin-Geon
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.3
    • /
    • pp.184-190
    • /
    • 2007
  • Approximately 2.0 kb of the promoter region of the Pichia pastoris phosphoglycerate kinase gene (PGK1) was reduced to a 266 bp fragment and this minimized portion was used for construction of a new episomal constitutive expression vector in P. pastoris. As an approach to developing a constitutive expression vector in P. pastoris, the GAP promoter region of the Pichia expression vector pGAPZB was replaced with sequentially deleted PGK1 promoter fragments fused to a beta-galactosidase gene. When a lacZ gene was used as a reporter gene, PGK1 promoter strength was lower than that of the constitutive GAP promoter but it was higher than TEF1. We report here the development of the pPGKZ-E vector as a new episomal expression vector for heterologous gene expression by removing non-essential regions of the PGK1 promoter. This broadens the choice of episomal expression vectors for controlled constitutive expression in P. pastoris.

Molecular Cloning of Bacillus stearothermophilus cdd Gene Encoding Thermostable Cytidine/Deoxycytidine Deaminase (Bacillus stearothermophilus 의 내열성 시티딘/디옥시시티딘 디아미나제를 코드하는 cdd 유전자의 클로닝)

  • Soo, Chang-Jong;Song, Bang-Ho;Kim, Jong-Guk;Hong, Soon-Duck
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.334-342
    • /
    • 1989
  • The Bacillus stearothermophilus cdd gene encoding cytidine deaminase (cytidine/2'-deoxycytidine aminohydrolase; EC 3.5.4.5) was isolated through shot gun cloning by oomplementation of an E. coli cdd mutation. Primarily 3.0 kbp of the exogenote was cloned into the Pstl site of pBR322 (pJSC101). By subsequent deletion and subcloning from the insert of pJSC101 with cdd$^+$ and tetracycline resistancy, about 1.35 kbp of the EcoRI$_1$/PstI$_2$ fragment containing the cdd gene was isolated as pJSC201. The minicell experiment revealed a molecular mass of 33,000 dalton for polypeptide from the cloned DNA fragment complementing the cdd gene. From the lacZ fusion of 550 bp fragment of the EcoRI$_1$/AuaI as a putative promoter region, the transcription direction of the cdd gene on pJSC201 is from EcoRI towards the PstI sites, When the cdd gene was expressed in B. subtilis ED4O (cdd$^-$, pyr$^-$) by transformation with the E. coli-B. subtilis shuttle vector, the gene expression occured more efficiently than in E. coli and the gene appears to be stably maintained in B. subtitis as well as in E. coli.

  • PDF

Study on Expression and Characterization of HRD3 Gene Related DNA Repair from Eukaryotic Cells (진핵세포에서 DNA 회복에 관련된 HRD3 유전자의 분리, 발현 및 특성 연구)

  • Shin, Su-Hwa;Park, In-Soon
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.325-330
    • /
    • 2004
  • The RAD3 gene of Saccharomyces cerevisiae is required for excision repair and is essential for cell viability. RAD3 encoded protein possesses a single stranded DNA-dependent ATPase and DNA and DNA-RNA helicase activities. To examine the extent of conservation of structure and function of RAD3 during eukaryotic evolution, the RAD3 homolog gene was isolated by screening of genomic DNA library. The isolated gene was designated as HRD3 (Homologue of RAD3 gene). The over-expressed HRD3 protein was estimated to be a 75 kDa in size which is in good agreement with the estimated by the nucleotide sequence of the cloned gene. Two-dimensional gel electrophoresis showed that a number of other protein spots dramatically disappeared when the HRD3 protein was overexpressed. The overexpressed RAD3 protein showed a toxicity in E. coli host, suggesting that this protein may be involved in the inhibition of protein synthesis and/or degradation of host protein. To determine which part of HRD3 gene contributes to the toxicity in E. coli, various fusion plasmids containing a partial sequence of HRD3 and lac'Z gene were constructed. These results suggest that the C-terminal domain of HRD3 protein may be important for both toxic effect in E. coli and for its role in DNA repair in S. pombe.

Design and Cloning of the Gene for a Novel Insulin Analogue, $(B^{30}$-Homoserine) Human Insulin

  • Nam, Doo-H.;Ko, Jeong-Heon;Lee, Seung-Yup
    • Archives of Pharmacal Research
    • /
    • v.16 no.4
    • /
    • pp.271-275
    • /
    • 1993
  • In order to prepare a novel human insulin analogue suhbstituted with homoserine at B$^{30}$ / position, (B$^{30}$ /-homoserine) human insulin, a synthetic gene was designed by linking directly a gene for B chain with that for A chain. This gene was constructed by enzymatic joining of 10 different synthetic oligonucleotides, and then inserted at the polylinker region of pUC19 plasmid. To achieve a high level of gene expression, the gene fusion technique region of pUC19 plasmid. To achieve a high level of gene expression, the gene fusion technique was employed using amino terminal regions of lacZ gene up to Clal or hpal, and either of them has been located under tac promoter. The chemical induction of these fused genes by isopropyl-.betha.-D-thiogalactopyranoside (IPTG) gave a satisfactory level of expression in Escherichia coli harboring the ocnstructed plasmids. It was observed that the fused gene product as a single chain insulin precusor was produced more than 30% of total cell protein of E. coli as a form of inclusion body.

  • PDF

Effect of fur on pyrC Gene Expression

  • Chai, Sang-Ho;Song, Chang-Kyu;Kim, Seong-Kwun;Park, Jun-Ho;Wee, Se-Chan
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.583-589
    • /
    • 2007
  • The promoter region of pyrC (dihydroorotase) gene of Escherichia coli was shown to have Fur protein binding properties by gel retardation assay. In vivo regulation of the pyrC expression was studied by measuring dihydroorotase activity and ${\beta}$-galactosidase level in the $fur^+$ and $fur^-$ genetic background. The expression of chromosomal dihydroorotase activity and ${\beta}$-galactosidase activity of pyrC-lacZ fusion plasmid was repressed to about 30% and 17%, respectively in the $fur^+$ strain compared to those in the $fur^-$ strain. Divalent ions such as $Fe^{2+}$ and $Zn^{2+}$ were not required for the repression. PyrC expression was also reduced to one half by 1 mM uracil. The effect of uracil was independent on the fur gene.

Iron Chelator-Inducible Expression System for Escherichia coli

  • Lim, Jae-Myung;Hong, Mi-Ju;Kim, Seong-Hun;Oh, Doo-Byoung;Kang, Hyun-Ah;Kwon, Oh-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1357-1363
    • /
    • 2008
  • The $P_{entC}$ promoter of the entCERA operon encoding enzymes for enterobactin biosynthesis in Escherichia coli is tightly regulated by the availability of iron in the culture medium. In iron-rich conditions, the $P_{entC}$ promoter activity is strongly repressed by the global transcription regulator Fur (ferric uptake regulator), which complexes with ferrous ions and binds to the Fur box 19-bp inverted repeat. In this study, we have constructed the expression vector pOS2 containing the $P_{entC}$ promoter and characterized its repression, induction, and modulation by quantifying the expression of the lacZ reporter gene encoding $\beta$-galactosidase. $\beta$-Galactosidase activities of E. coli transformants harboring pOS2-lacZ were highly induced in the presence of divalent metal ion chelators such as 2,2'-dipyridyl and EDTA, and were strongly repressed in the presence of excess iron. It was also shown that the basal level $\beta$-galactosidase expression by the $P_{entC}$ promoter was drastically decreased by incorporating the fur gene into the expression vector. Since the newly developed iron chelator-inducible expression system is efficient and cost-effective, it has wide applications in recombinant protein production.

Analysis of Trans-Acting Elements for Regulation of moc Operons of pTi15955 in Agrobacterium tumefaciens

  • Jung, Won-Hee;Baek, Chang-Ho;Lee, Jeong-Kug;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.637-645
    • /
    • 1999
  • Two putative regulator genes, mocR and mocS, of the moc (mannityl opine catabolism) operons in pTi15955 of the octopine-/mannityl opine-type Agrobacterium tumefaciens strain 15955, were tested for their possible roles as repressors in the moc operons. The regions upstream of macC and mocD, the first structural genes in the two divergently oriented moc operons, were transcriptionally fused into the promoterless lacZ reporter gene. Each of the lacZ-fusions was introduced into Agrobacterium strain UIA5, a Ti plasmid-cured derivative, harboring either a mocR or a mocS clone. The resulting strains were grown in media containing various sugar sources, and the $\beta$-galactosidase activities were quantitatively measured. The results suggested that MocR repressed the expression of macC and macD. The expression of the fused $\beta$-galactosidase was not induced by mannopine (MOP) or possible catabolic intermediates of the opine, e.g. santhopine (SOP), glucose, mannose, or glutamine. However, the repression was significantly relieved by the supplementation of MOP and the concomitant introduction of the agcA gene encoding MOP cyclase that catalyzes the lactonization of MOP to agropine (AGR). These results suggested that AGR, rather than MOP or the other catabolic intermediates, is the inducer for the expression of the operon. On the contrary to previous report showing that the induction levels of macC and macD were lowered by the supplementation of inorganic nitrogen in media, the expression of these genes was not affected by the level of nitrogen in our reporter system. MocS did not strongly repress the expressions of macC and mocD. It is possible that MocS may be involved in the regulation of the operons present downstream of the moc operon, which are responsible for the utilization of mannopinic acid and agropinic acid.

  • PDF

Spaciotemporal Plasticity of Intergeniculate Leaflet Using Genetically Modified Pseudorabies Virus Recombinant (유전자 조작된 Pseudorabies Virus 변종을 이용한 무릎사이작은핵의 시.공간적 가소성)

  • Kim, Jin-Sang;Park, Eun-Se;Cheon, Song-Hee;Kim, Min-Hee;Bang, Hyun-Soo;Kwon, Young-Shil;Lee, Bong-Hee;Kim, Young-Chul
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.411-416
    • /
    • 2006
  • This study was carried out to investigate the spaciotemporal plasticity of intergeniculate leaflet in postnatal mongolian gerbil using genetically modified pseudorabies virus recombinant, which was a kind of excellent neurotracer with the ability to transpass the neuronal synaptic cleft. In addition, we tried to evaluate the special role of intergeniculate leaflet as a signal controler of circardian rhythm by expression of various nourotransmitters in suprachiasrnatic nucleus. The PRV-BaBlu, a genetically modified strain of PRV-Bartha with lac-Z gene, was injected into vitreous body of postnatal mongolian gerbil, and immunostained. The PRV-Bablu infected the neurons in intergeniculate leaflet of postnatal mongolian gerbil, and the degree of viral infection in postnatal period of experimental animals had tendency to increase with time consuming. This results showed that the mutant PRV-Bar-tha strain with lac-Z gene, PRV-BaBlu, was a very excellent neurotracer to localize the retinogeniculate tract with infection of neurons in intergeniculate leaflet specially.