• Title/Summary/Keyword: laboratory model experiments

Search Result 604, Processing Time 0.033 seconds

Phase-field simulation of radiation-induced bubble evolution in recrystallized U-Mo alloy

  • Jiang, Yanbo;Xin, Yong;Liu, Wenbo;Sun, Zhipeng;Chen, Ping;Sun, Dan;Zhou, Mingyang;Liu, Xiao;Yun, Di
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.226-233
    • /
    • 2022
  • In the present work, a phase-field model was developed to investigate the influence of recrystallization on bubble evolution during irradiation. Considering the interaction between bubbles and grain boundary (GB), a set of modified Cahn-Hilliard and Allen-Cahn equations, with field variables and order parameters evolving in space and time, was used in this model. Both the kinetics of recrystallization characterized in experiments and point defects generated during cascade were incorporated in the model. The bubble evolution in recrystallized polycrystalline of U-Mo alloy was also investigated. The simulation results showed that GB with a large area fraction generated by recrystallization accelerates the formation and growth of bubbles. With the formation of new grains, gas atoms are swept and collected by GBs. The simulation results of bubble size and distribution are consistent with the experimental results.

Development of "L2L Teaching Model" Integrating a Hospital to School Laboratory to Strengthen Practical Education for Preliminary Clinical Laboratory Technologist (예비 임상병리사의 실무중심 교육의 강화를 위한 병원-학교 검사실 융합형(L2L) 교수학습 모형의 개발)

  • Hong, Seung Bok;Jeoung, Su-Ha;Shin, In Soo;Yoon, Young-Bae;You, Young O
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.2
    • /
    • pp.164-169
    • /
    • 2018
  • The development of teaching models to strengthen practical education and actively participate in the classes of students is now required in recent education situations. This study examined the participation and satisfaction level of students' classes after applying a teaching model-integrated hospital and school laboratory (named L2L). A total of 33 students who took the subject of a clinical microbiology experiments were involved in this study. Each group representative participating in a pre-class field exercise in the hospital microbiology laboratory was asked to conduct the experiment. After applying the L2L teaching models, the academic self-efficacy ($2.87{\pm}0.58{\rightarrow}3.38{\pm}0.55$), class participation ($2.60{\pm}0.92{\rightarrow}3.62{\pm}0.78$), and class satisfaction ($2.48{\pm}1.01{\rightarrow}3.85{\pm}0.87$) increased significantly (P<0.05). This means that pre-class field exercises created interest in the student's class and boosted self-confidence, leading to increased participation and satisfaction for the class. In conclusion, the L2L teaching model is an effective teaching method to enhance the practical training for preliminary clinical laboratory technologists.

Polyethylene flow prediction with a differential multi-mode Pom-Pom model

  • Rutgers, R.P.G.;Clemeur, N.;Debbaut, B.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.1
    • /
    • pp.25-32
    • /
    • 2002
  • We report the first steps of a collaborative project between the University of Queensland, Polyflow, Michelin, SK Chemicals, and RMIT University, on simulation, validation and application of a recently introduced constitutive model designed to describe branched polymers. Whereas much progress has been made on predicting the complex flow behaviour of many - in particular linear - polymers, it sometimes appears difficult to predict simultaneously shear thinning and extensional strain hardening behaviour using traditional constitutive models. Recently a new viscoelastic model based on molecular topology, was proposed by McLeish and carson (1998). We explore the predictive power of a differential multi-mode version of the porn-pom model for the flow behaviour of two commercial polymer melts: a (long-chain branched) low-density polyethylene (LDPE) and a (linear) high-density polyethylene (HDPE). The model responses are compared to elongational recovery experiments published by Langouche and Debbaut (19c99), and start-up of simple shear flow, stress relaxation after simple and reverse step strain experiments carried out in our laboratory.

Phenomenological monte carlo simulation model for predicting B, $BF_2$, As, P and Si implant profiles in silicon-based semiconductor device

  • Kwon, Oh-Kuen;Son, Myung-Sik;Hwang, Ho-Jung
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • This paper presents a newly enhanced damage model in Monte Carlo (MC) simulation for the accurate prediction of 3-Dimensional (3D) as-implanted impurity and point defect profiles induced by ion implantation in (100) crystal silicon. An empirical electronic energy loss model for B, BF2, As, P and Si self implant over the wide energy range has been proposed for the ULSI device technology and development. Our model shows very good agreement with the SIMS data over the wide energy range. In the damage accumulation, we considered the self-annealing effects by introducing our proposed non-linear recomvination probability function of each point defect for the computational efficiency. For the damage profiles, we compared the published RBS/channeling data with our results of phosphorus implants. Our damage model shows very reasonable agreement with the experiments for phosphorus implants.

  • PDF

In-line (α,n) source sampling methodology for monte carlo radiation transport simulations

  • Griesheimer, David P.;Pavlou, Andrew T.;Thompson, Jason T.;Holmes, Jesse C.;Zerkle, Michael L.;Caro, Edmund;Joo, Hansem
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1199-1210
    • /
    • 2017
  • A new in-line method for sampling neutrons emitted in (${\alpha}$,n) reactions based on alpha particle source information has been developed for continuous-energy Monte Carlo simulations. The new method uses a continuous-slowing-down model coupled with (${\alpha}$,n) cross section data to precompute the expected neutron yield over the alpha particle lifetime. This eliminates the complexity and computational cost associated with explicit charged particle transport. When combined with an integrated alpha particle decay source sampling capability, the proposed method provides an efficient and accurate method for sampling (${\alpha}$,n) neutrons based solely on nuclide inventories in the problem, with no additional user input required. Results from several example calculations show that the proposed method reproduces the (${\alpha}$,n) neutron yields and energy spectra from reference experiments and calculations.

Characterization of Quintinite Particles in Fluoride Removal from Aqueous Solutions

  • Kim, Jae-Hyun;Park, Jeong-Ann;Kang, Jin-Kyu;Son, Jeong-Woo;Yi, In-Geol;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.247-253
    • /
    • 2014
  • The aim of this study was to characterize quintinite in fluoride removal from aqueous solutions, using batch experiments. Experimental results showed that the maximum adsorption capacity of fluoride to quintinite was 7.71 mg/g. The adsorption of fluoride to quintinite was not changed at pH 5-9, but decreased considerably in highly acidic (pH < 3) and alkaline (pH > 11) solution conditions. Kinetic model analysis showed that among the three models (pseudo-first-order, pseudo-second-order, and Elovich), the pseudo-second-order model was the most suitable for describing the kinetic data. From the nonlinear regression analysis, the pseudo-second-order parameter values were determined to be $q_e=0.18mg/g$ and $k_2=28.80g/mg/hr$. Equilibrium isotherm model analysis demonstrated that among the three models (Langmuir, Freundlich, and Redlich-Peterson), both the Freundlich and Redlich-Peterson models were suitable for describing the equilibrium data. The model analysis superimposed the Redlich-Peterson model fit on the Freundlich fit. The Freundlich model parameter values were determined from the nonlinear regression to be $K_F=0.20L/g$ and 1/n=0.51. This study demonstrated that quintinite could be used as an adsorbent for the removal of fluoride from aqueous solutions.

2D Finite Element Modeling of Bed Elevation Change in a Curved Channel (유한요소법을 이용한 만곡수로에서의 2차원 하상변동 수치모형)

  • Kim Tae Beom;Choi Sung-Uk;Min Kyung Duck
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.414-418
    • /
    • 2005
  • A finite element model is developed for the numerical simulation of bed elevation change in a curved channel. The SU/PG (Streamline-Upwind/Petrov-Galerkin) method is used to solve 2D shallow water equations and the BG (Bubnov-Galerkin) method is used for the Exner equation. For the time derivative terms, the Crank-Nicolson scheme is used. The developed model is a decoupled model in a sense that the bed elevation does not change simultaneously with the flow during the computational time step. The total load formula with is used for the sediment transport model. The slip conditions are described along the lateral boundaries. The effects of gravity force due to geometry change and the secondary flows in a curved channel are considered in the model. For the verification, the model is applied to two laboratory experiments. The first is $140^{\circ}$ bended channel data at Delft Hydraulics Laboratory and the second is $140^{\circ}$ bended channel data at Laboratory of Fluid Mechanics of the Delft University of Technology. The finite element grid is constructed with linear quadrilateral elements. It is found that the computed results are in good agreement with measured data, showing a point bar at the inner bank and a pool at the outer bank.

  • PDF

DNAPL migration in fracture networks and its remediation

  • 이항복;지성훈;여인욱;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.543-547
    • /
    • 2003
  • We applied the modified invasion percolation (MIP) model to the migration of DNAPL within a two-dimensional random fracture network. The MIP model was verified against laboratory experiments, which was conducted using a two-dimensional random fracture network model. The results showed that the MIP needs modification. To remove TCE trapped in a random fracture network, the density-surfactant-motivated removal method was applied and found very effective to remove TCE from dead-end fractures.

  • PDF

Near-Field Hydrodynamic Analysis of the Submerged Thermal Discharge Using CFD Model (CFD 모델을 이용한 수중방류 온배수의 근역 동수역학 해석)

  • Hwang, In-Tae;Kim, Deok-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.466-473
    • /
    • 2011
  • The buoyancy and initial momentum fluxes make near-field dominated by buoyant jet when thermal discharge releases underwater. In order to estimate prediction capabilities of those near-field phenomena, non-hydrostatic RANS applied CFD(Computational Fluid Dynamic) model was used. Condition of model was composed based on past laboratory experiments. Numerical simulations carried out for the horizontal buoyant jet in the stagnant flow and vertical buoyant jet into crossflow. The results of simulation are compared with the terms of trajectory and dilution rate of laboratory experiments and analytic model(CorJET) results. CFD model showed a good agreement with them. CFD model can be appropriate for assessment of submerged thermal discharge effect because CFD model can resolve the limitations of near-field analytic model and far-field quasi 3D hydrodynamic model. The accuracy and capability of the CFD model is reviewed in this study. If the computational efficiency get improved, CFD model can be widely applied for simulation of transport and diffusion of submerged thermal discharge.

Adaptive Weight Collaborative Complementary Learning for Robust Visual Tracking

  • Wang, Benxuan;Kong, Jun;Jiang, Min;Shen, Jianyu;Liu, Tianshan;Gu, Xiaofeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.305-326
    • /
    • 2019
  • Discriminative correlation filter (DCF) based tracking algorithms have recently shown impressive performance on benchmark datasets. However, amount of recent researches are vulnerable to heavy occlusions, irregular deformations and so on. In this paper, we intend to solve these problems and handle the contradiction between accuracy and real-time in the framework of tracking-by-detection. Firstly, we propose an innovative strategy to combine the template and color-based models instead of a simple linear superposition and rely on the strengths of both to promote the accuracy. Secondly, to enhance the discriminative power of the learned template model, the spatial regularization is introduced in the learning stage to penalize the objective boundary information corresponding to features in the background. Thirdly, we utilize a discriminative multi-scale estimate method to solve the problem of scale variations. Finally, we research strategies to limit the computational complexity of our tracker. Abundant experiments demonstrate that our tracker performs superiorly against several advanced algorithms on both the OTB2013 and OTB2015 datasets while maintaining the high frame rates.