• 제목/요약/키워드: laboratory model experiments

검색결과 601건 처리시간 0.029초

하상변화가 있는 자연하천에서의 오염물질 거동해석을 위한 주기적저장대모형 개발 (Development of Axially Periodic Transient Storage Zone Model for the Solute Mixing in Natural Streams and Rivers with Various Bottom Boundaries)

  • 정태성;서일원
    • 대한토목학회논문집
    • /
    • 제26권6B호
    • /
    • pp.623-631
    • /
    • 2006
  • 본 연구에서는 하상변화가 존재하는 자연하천에서의 물질거동을 해석하기 위한 주기적저장대모형을 개발하였다. 저장대 구조에 따른 저장효과를 살펴보기 위하여 자연하천의 특성을 고려한 4개의 주기적 여울-소 구조를 갖는 와 흐름에서 소금물과 염료를 이용하여 실험한 모형실험결과를 이용하였다. 염료실험 결과, 물질이동 및 혼합거동은 하상 및 하안의 구조에 영향을 받는 것으로 나타났다. 기존의 저장대분산모형이 주기적으로 변화하는 저장대 구조에 의한 이동 및 질량교환 효과를 정확히 재현하지 못하는 것에 비해서 경계변화에 따른 질량교환 효과를 보다 효과적으로 재현할 수 있는 주기적저장대모형은 모형 실험 결과를 잘 재현하는 것으로 나타났다. 새로운 저장대모형을 미국 텍사스주의 Sabin River에 적용하였으며, 그 결과는 실험을 통해서 수집된 농도분포를 잘 재현하는 것으로 나타났다.

Uplift capacity of single vertical belled pile embedded at shallow depth

  • Jung-goo Kang;Young-sang Kim;Gyeongo Kang
    • Geomechanics and Engineering
    • /
    • 제35권2호
    • /
    • pp.165-179
    • /
    • 2023
  • This study investigates the uplift capacity of a single vertical belled pile buried at shallow depth in dry sand. The laboratory model experiments are conducted with different pile-tip angles and relative densities. In addition, image and FEM analyses are performed to observe the failure surface of the belled pile for different pile-tip angles and relative densities. Accordingly, the uplift capacity and failure angle in the failure surface of the belled pile were found to depend on the belled pile-tip angle and relative density. A predictive model for the uplift capacity of the belled pile was proposed considering the relative density and belled pile-tip angle based on a previous limit equilibrium equation. To validate the applicability of the proposed model, the values calculated using the proposed and previous models were compared to those obtained through a laboratory model experiment. The proposed model had the best agreement with the laboratory model experiment.

Numerical Model for Stack Gas Diffusion in Terrain Containing Buildings - Application of Numerical Model to a Cubical Building and a Ridge Terrain -

  • Sada, Koichi;Michioka, Takenobu;Ichikawa, Yoichi
    • Asian Journal of Atmospheric Environment
    • /
    • 제2권1호
    • /
    • pp.1-13
    • /
    • 2008
  • A numerical simulation method has been developed to predict atmospheric flow and stack gas diffusion using a calculation domain of several km around a stack under complex terrain conditions containing buildings. The turbulence closure technique using a modified k-$\varepsilon$-type model under a non hydrostatic assumption was used for the flow calculation, and some of the calculation grids near the ground were treated as buildings using a terrain-following coordinate system. Stack gas diffusion was predicted using the Lagrangian particle model, that is, the stack gas was represented by the trajectories of released particles. The numerical model was applied separately to the flow and stack gas diffusion around a cubical building and to a two-dimensional ridge in this study, before being applied to an actual terrain containing buildings in our next study. The calculated flow and stack gas diffusion results were compared with those obtained by wind tunnel experiments, and the features of flow and stack gas diffusion, such as the increase in turbulent kinetic energy and the plume spreads of the stack gas behind the building and ridge, were reproduced by both calculations and wind tunnel experiments. Furthermore, the calculated profiles of the mean velocity, turbulent kinetic energy and concentration of the stack gas around the cubical building and the ridge showed good agreement with those of wind tunnel experiments.

과학적 실험과 공학적 실험에서 초등교사의 수업 과정 분석 (Analysis of Elementary School Teachers' Laboratory Instruction Process through Experiments from Science Laboratory and Engineering Laboratory)

  • 임재근;이소리;양일호
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제29권4호
    • /
    • pp.515-525
    • /
    • 2010
  • The purpose of this study was to analyze of how the elementary school teachers lead their classes of a science laboratory instruction and an engineering laboratory instruction in a science subject class. For this study, science laboratory and engineering laboratory lessons were selected and for each science and engineering laboratory lesson, five elementary school teachers were video-recorded of their lessons. The science and engineering laboratory lessons were analyzed by utilizing processes of the science model and the engineering model based on Schauble et al. (1991). The results of these studies are as follows: In science laboratory instruction, some participants didn't distinguish the difference between the science laboratory goal and the engineering laboratory goal. All of participants used search and end strategy of engineering laboratory for science laboratory lesson. In engineering laboratory instruction, all of participants guided to students engineering laboratory goal and used inferences and search strategy of engineering laboratory. However they didn't use the trial and error strategy or redesign which can be an essential element in engineering and design process. Educational implications are discussed.

  • PDF

Model of the onset of liquid entrainment in large branch T-junction with the consideration of surface tension

  • Liu, Ping;Shen, Geyu;Li, Xiaoyu;Gao, Jinchen;Meng, Zhaoming
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.804-811
    • /
    • 2021
  • The T-junction exists widely in industrial engineering, especially in nuclear power plants, which plays an important part in nuclear power reactor thermal-hydraulics. However, the existing prediction models of the liquid entrainment are mainly based on the small branches or small breaks while there are a few researches for large branches (d/D > 0.2). Referring to the classical models about the onset of liquid entrainment of the T-junction, most of previous models regard liquid as ideal working fluid and ignore surface tension. This paper aims to study the effect of surface tension on the liquid entrainment, and develops an improved model based on the reasonable assumption. The establishment of new model employs the methods of force analysis, dimensional analysis. Besides, the dimensionless Weber number is adopted innovatively into the model to show the effect of surface tension. What is more, in order to validate the new model, three kinds of working fluids with different surface tensions are creatively adopted in the experiments: water, silicone oil and ethyl alcohol. The final results show that surface tension has a nonnegligible effect on the onset of liquid entrainment in large branch T-junction. The new model is well matched with the experimental data.

Model for simulating the effects of particle size distribution on the hydration process of cement

  • Chen, Changjiu;An, Xuehui
    • Computers and Concrete
    • /
    • 제9권3호
    • /
    • pp.179-193
    • /
    • 2012
  • The hydration of cement contributes to the performance characteristics of concrete, such as strength and durability. In order to improve the utilization efficiency of cement and its early properties, the particle size distribution (PSD) of cement varies considerably, and the effects of the particle size distribution of cement on the hydration process should be considered. In order to evaluate effects of PSD separately, experiments testing the isothermal heat generated during the hydration of cements with different particle size distributions but the same chemical composition have been carried out. The measurable hydration depth for cement hydration was proposed and deduced based on the experimental results, and a PSD hydration model was developed in this paper for simulating the effects of particle size distribution on the hydration process of cement. First, a reference hydration rate was derived from the isothermal heat generated by the hydration of ordinary Portland cement. Then, the model was extended to take into account the effect of water-to-cement ratio, hereinafter which was referred to as PSD hydration model. Finally, the PSD hydration model was applied to simulate experiments measuring the isothermal heat generated by the hydration of cement with different particle size distributions at different water-to-cement ratios. This showed that the PSD hydration model had simulated the effects of particle size distribution and water-to-cement ratio on the hydration process of cement with satisfactory accuracy.

Robust Three-step facial landmark localization under the complicated condition via ASM and POEM

  • Li, Weisheng;Peng, Lai;Zhou, Lifang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권9호
    • /
    • pp.3685-3700
    • /
    • 2015
  • To avoid influences caused by pose, illumination and facial expression variations, we propose a robust three-step algorithm based on ASM and POEM for facial landmark localization. Firstly, Model Selection Factor is utilized to achieve a pose-free initialized shape. Then, we use the global shape model of ASM to describe the whole face and the texture model POEM to adjust the position of each landmark. Thirdly, a second localization is presented to discriminatively refine the subtle shape variation for some organs and contours. Experiments are conducted in four main face datasets, and the results demonstrate that the proposed method accurately localizes facial landmarks and outperforms other state-of-the-art methods.

유공형 부방파제의 장력특성에 관한 실험 (Experiments on Tension Characteristics of Perforated-type Floating Breakwaters)

  • 윤재선;하태민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.514-514
    • /
    • 2017
  • Floating breakwaters were treated as solid bodies without any perforation in previous studies. In this study, however, a floating breakwater is perforated to allow the partial absorption of the energy produced by incident waves and an air chamber is placed in the upper part to control the breakwater draft. A series of laboratory experiments for a floating breakwater installed with a mooring system are carried out. In general, a mooring system can be classified by the number of mooring points, the shape of the mooring lines, and the degree of line tension. In this study, a four-point mooring is employed since it is relatively easier to analyze the measured results. Furthermore, both the tension-leg and the catenary mooring systems have been adopted to compare the performance of the system. In laboratory experiments, the hydraulic characteristics of a floating breakwater were obtained and analyzed in detail. Also, a hydraulic model test was carried out on variable changes by changing the mooring angle and thickness of perforated wall. A hydraulic model was designed to produce wave energy by generating a vortex with the existing reflection method. Analysis on wave changes was conducted and the flow field around the floating breakwater and draft area, which have elastic behavior, was collected using the PIV system. From the test results the strong vortex was identified in the draft area of the perforated both-sides-type floating breakwater. Also, the wave control performance of the floating breakwater was improved due to the vortex produced as the tension in the mooring line decreased.

  • PDF

Simulation of the Temperature and Salinity Along $36^{\circ}N$ in the Yellow Sea with a Wave-Current Coupled Model

  • Qiao, Fangli;Ma, Ji-An;Yang, Yong-Zeng;Yuan, Yeli
    • Journal of the korean society of oceanography
    • /
    • 제39권1호
    • /
    • pp.35-45
    • /
    • 2004
  • Based on the MASNUM wave-current coupled model, the temperature and salinity structures along $36^{\circ}N$ in the Yellow Sea are simulated and compared with observations. Both the position and strength of the simulated thermocline are similar to data analysis. The wave-induced mixing is strongest in winter and plays a key role in the formation of the upper mixed layer in spring and summer. Numerical experiments suggest that in the coastal area, wave-induced mixing and tidal mixing control the vertical structure of temperature and salinity.

Assessment of the severe accident code MIDAC based on FROMA, QUENCH-06&16 experiments

  • Wu, Shihao;Zhang, Yapei;Wang, Dong;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.579-588
    • /
    • 2022
  • In order to meet the needs of domestic reactor severe accident analysis program, a MIDAC (Module Invessel Degraded severe accident Analysis Code) is developed and maintained by Xi'an Jiaotong University. As the accuracy of the calculation results of the analysis program is of great significance for the formulation of severe accident mitigation measures, the article select three experiments to evaluate the updated severe accident models of MIDAC. Among them, QUENCH-06 is the international standard No.45, QUENCH-16 is a test for the analysis of air oxidation, and FROMA is an out-of-pile fuel rod melting experiment recently carried out by Xi'an Jiaotong University. The heating and melting model with lumped parameter method and the steam oxidation model with Cathcart-Pawel and Volchek-Zvonarev correlations combination in MIDAC could better meet the needs of severe accident analysis. Although the influence of nitrogen still need to be further improved, the air oxidation model with NUREG still has the ability to provide guiding significance for engineering practice.