• Title/Summary/Keyword: laboratory's safety

Search Result 578, Processing Time 0.029 seconds

Nonlocal Formulation for Numerical Analysis of Post-Blast Behavior of RC Columns

  • Li, Zhong-Xian;Zhong, Bo;Shi, Yanchao;Yan, Jia-Bao
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.403-413
    • /
    • 2017
  • Residual axial capacity from numerical analysis was widely used as a critical indicator for damage assessment of reinforced concrete (RC) columns subjected to blast loads. However, the convergence of the numerical result was generally based on the displacement response, which might not necessarily generate the correct post-blast results in case that the strain softening behavior of concrete was considered. In this paper, two widely used concrete models are adopted for post-blast analysis of a RC column under blast loading, while the calculated results show a pathological mesh size dependence even though the displacement response is converged. As a consequence, a nonlocal integral formulation is implemented in a concrete damage model to ensure mesh size independent objectivity of the local and global responses. Two numerical examples, one to a RC column with strain softening response and the other one to a RC column with post-blast response, are conducted by the nonlocal damage model, and the results indicate that both the two cases obtain objective response in the post-peak stage.

An improved regularized particle filter for remaining useful life prediction in nuclear plant electric gate valves

  • Xu, Ren-yi;Wang, Hang;Peng, Min-jun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2107-2119
    • /
    • 2022
  • Accurate remaining useful life (RUL) prediction for critical components of nuclear power equipment is an important way to realize aging management of nuclear power equipment. The electric gate valve is one of the most safety-critical and widely distributed mechanical equipment in nuclear power installations. However, the electric gate valve's extended service in nuclear installations causes aging and degradation induced by crack propagation and leakages. Hence, it is necessary to develop a robust RUL prediction method to evaluate its operating state. Although the particle filter(PF) algorithm and its variants can deal with this nonlinear problem effectively, they suffer from severe particle degeneracy and depletion, which leads to its sub-optimal performance. In this study, we combined the whale algorithm with regularized particle filtering(RPF) to rationalize the particle distribution before resampling, so as to solve the problem of particle degradation, and for valve RUL prediction. The valve's crack propagation is studied using the RPF approach, which takes the Paris Law as a condition function. The crack growth is observed and updated using the root-mean-square (RMS) signal collected from the acoustic emission sensor. At the same time, the proposed method is compared with other optimization algorithms, such as particle swarm optimization algorithm, and verified by the realistic valve aging experimental data. The conclusion shows that the proposed method can effectively predict and analyze the typical valve degradation patterns.

Current status of working environment monitoring the designated organization's laboratory and factors affecting reliability of the analysis results (작업환경측정 지정기관의 분석실 현황 및 분석결과의 신뢰성에 영향을 주는 요인)

  • Kim, Ki-Woong;Park, Hae Dong;Kim, Sungho;Ro, Jiwon;Hwang, Eun Song;Chung, Eun-Kyo;Cho, Kee Hong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.1
    • /
    • pp.108-116
    • /
    • 2018
  • Objectives: This study investigated to the analytical work environment, analyst's expert and status of analytical instrument in the designated organization's laboratory for measuring work environment, and carried out to ensure reliability of analytical results. Methods: This study was conducted by 114 analysts who work in designated organization's laboratory for measuring work environment. Information on the working environment and personal characteristics of the analysts were collected using a self-reported questionnaire and were analyzed using the SPSS program through analysis of frequency and t-test. Results: The speciality of subjects was occupational health(57.0%), environmental health(38.6%) and environmental engineering(4.4%), and they had a higher level of academic ability than workers in other industries. Analysts had to handle a large number of sample analysis and many tasks other than analytical work. The analysts answered that it was difficult to analyze organic substances than inorganic substances, and the difficult parts were the analytical methods setting of new substances(55.3%), instrument analysis(24.6%) and principle of analysis(23.7%). Analytical instruments mainly have legally required instruments. The difficulty of the analysis is solved from the senior analyst in the laboratory and analytical information is mainly exchanged through seminar organized by the Association of Occupational Health Analysts. The analysts who are planning to move or considering the company were 48.2%, and the reasons for moving the company were difficult to work(14.0%), low salary(9.6%), employment type(8.8%) and job stress(7.0%). Conclusions: The conclusions of our study were that it was possible to secure reliability by solving the problems such as implementing professional education to improve expertise of analysts, strengthening analytical instruments through institutional improvement and improving work environment.

Radix et Rhizoma Ginseng chemoprevents both initiation and promotion of cutaneous carcinoma by enhancing cell-mediated immunity and maintaining redox homeostasis

  • Yu, Suyun;Wang, Siliang;Huang, Shuai;Wang, Wei;Wei, Zhonghong;Ding, Yushi;Wang, Aiyun;Huang, Shile;Chen, Wenxing;Lu, Yin
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.580-592
    • /
    • 2020
  • Background: Radix et Rhizoma Ginseng (thereafter called ginseng) has been used as a medicinal herb for thousands of years to maintain people's physical vitality and is also a non-organ-specific cancer preventive and therapeutic traditional medicine in several epidemiologic and preclinical studies. Owing to few toxic side effects and strong enhancement on body immunity, ginseng has admirable application potential and value in cancer chemoprevention. The study aims at investigating the chemopreventive effects of ginseng on cutaneous carcinoma and the underlying mechanisms. Methods: The mouse skin cancer model was induced by 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate. Ultraperformance liquid chromatography/mass spectrometry was used for identifying various ginsenosides, the main active ingredients of ginseng. Comprehensive approaches (including network pharmacology, bioinformatics, and experimental verification) were used to explore the potential targets of ginseng. Results: Ginseng treatment inhibited cutaneous carcinoma in terms of initiation and promotion. The content of Rb1, Rb2, Rc, and Rd ginsenosides was the highest in both mouse blood and skin tissues. Ginseng and its active components well maintained the redox homeostasis and modulated the immune response in the model. Specifically, ginseng treatment inhibited the initiation of skin cancer by enhancing T-cell-mediated immune response through upregulating HSP27 expression and inhibited the promotion of skin cancer by maintaining cellular redox homeostasis through promoting nuclear translocation of Nrf2. Conclusion: According to the study results, ginseng can be potentially used for cutaneous carcinoma as a chemopreventive agent by enhancing cell-mediated immunity and maintaining redox homeostasis with multiple components, targets, and links.

The Prediction of Lower Flash Points by Optimization Method

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • International Journal of Safety
    • /
    • v.8 no.2
    • /
    • pp.15-19
    • /
    • 2009
  • The flash point is the most widely used flammability property for the evaluation of the flammability hazard of combustible liquid mixtures. In this paper, the reported flash points for the the binary systems, ethylbenzene+n-butanol and ethylbenzene+n-hexanol were correlated by the optimization method. The optimization method based on the van Laar and Wilson equations were compared with the Raoult's law. The calculated values based on the optimization method were found to be better than those based on the Raoult's law.

A case study of safety management assessment application by unit process worker (단위공정 작업자에 대한 안전관리 평가적용 사례연구)

  • Lee, Kang-Bok;Kim, Geon-Ho;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.3
    • /
    • pp.9-14
    • /
    • 2007
  • A studies wish to present safety assessment table that is consisted of safety check-up, safety education, safety management for worker's safety management assessment about unit process. And safety management level was survey through case study that use safety assessment table. Safety management assessment table is improved safety management level of unit process, and is developed safety management system by worker confirms assessment items and improves problem.

Studies for the Guidance of Safety Pharmacology Studies in Compliance with Good Laboratory Practice (안전성약리시험의 Good Laboratory Practice 평가기술연구)

  • Choi Ki-Hwan;Park Ki-Sook;Lee Yun-Hee;Na Hang-Kwang;Yun Jae-Suk;Kim Dong-Sup;Kim Joo-Il
    • Toxicological Research
    • /
    • v.22 no.2
    • /
    • pp.109-116
    • /
    • 2006
  • Safety pharmacology studies are conducted to investigated the potential undesirable pharmacodynamic effects of a substance on physiological functions in relation to exposure in the therapeutic range and above. In the International Conference on Harmonisation (ICH), the guideline 'S7A: Safety Pharmacology Studies for Human Pharmaceuticals' has been developed and reached Step 5 of the ICH process in 2001. Now the Korea Food and Drug Administration (KFDA) are going to transfer 'The Guideline for General Pharmacology' into 'The Guideline for Safety Pharmacology'. Safety pharmacology studies should be performed in compliance with Good Laboratory Practice (GLP). Thus, the present paper reviews the Japanese GLP guidelines for pharmaceuticals to help the conduct and inspection of safety pharmacology studies in compliance with GLP. We also reviewed the ICH guidelines 'S7B revised : The Nonclinical Evaluation of the Potential for Delayed Ventricular Repolarization (QT Interval Prolongation) by Human Pharmaceuticals' and 'E14 : The Clinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential for Non-antiarrhythmic Drugs' to apply our drug approval systems.

Safety Analysis of APR+ PAFS for CDF Evaluation (노심손상빈도 평가를 위한 APR+ PAFS의 안전 해석)

  • Kang, Sang Hee;Moon, Ho Rim;Park, Young Seop
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.123-128
    • /
    • 2013
  • The Advanced Power Reactor Plus(APR+), which is a GEN III+ reactor based on the APR1400, is being developed in Korea. In order to enhance the safety of the APR+, a passive auxiliary feedwater system(PAFS) has been adopted in the APR+. The PAFS replaces the conventional active auxiliary feedwater system(AFWS) by introducing a natural driving force mechanism while maintaining the system function of cooling the primary side and removing the decay heat. As the PAFS completely replaces the conventional AFWS, it is required to verify the cooling capacity of PAFS for the core damage frequency(CDF) evaluation. For this reason, this paper discusses the cooling performance of the PAFS during transient accidents. The test case and scenarios were picked from the result of the sensitivity analysis in APR+ Probabilistic Safety Assessment(PSA). The analysis was performed by the best estimate thermal-hydraulic code, RELAP5/.MOD3.3. This study shows that the plant maintains the stable state without the core damages under the given test scenarios. The results of PSA considering this analysis' results shows that the CDF values are decreased. The analysis results can be used for more realistic and accurate performance of a PSA.

A Simple Multispectral Imaging Algorithm for Detection of Defects on Red Delicious Apples

  • Lee, Hoyoung;Yang, Chun-Chieh;Kim, Moon S.;Lim, Jongguk;Cho, Byoung-Kwan;Lefcourt, Alan;Chao, Kuanglin;Everard, Colm D.
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.142-149
    • /
    • 2014
  • Purpose: A multispectral algorithm for detection and differentiation of defective (defects on apple skin) and normal Red Delicious apples was developed from analysis of a series of hyperspectral line-scan images. Methods: A fast line-scan hyperspectral imaging system mounted on a conventional apple sorting machine was used to capture hyperspectral images of apples moving approximately 4 apples per second on a conveyor belt. The detection algorithm included an apple segmentation method and a threshold function, and was developed using three wavebands at 676 nm, 714 nm and 779 nm. The algorithm was executed on line-by-line image analysis, simulating online real-time line-scan imaging inspection during fruit processing. Results: The rapid multispectral algorithm detected over 95% of defective apples and 91% of normal apples investigated. Conclusions: The multispectral defect detection algorithm can potentially be used in commercial apple processing lines.

Experimental study on the condensation of sonic steam in the underwater environment

  • Meng, Zhaoming;Zhang, Wei;Liu, Jiazhi;Yan, Ruihao;Shen, Geyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.987-995
    • /
    • 2019
  • Steam jet condensation is of great importance to pressure suppression containment and automatic depressurization system in nuclear power plant. In this paper, the condensation processes of sonic steam jet in a quiescent subcooled pool are recorded and analyzed, more precise understanding are got in direct contact condensation. Experiments are conducted at atmospheric pressure, and the steam is injected into the subcooled water pool through a vertical nozzle with the inner diameter of 10 mm, water temperature in the range of $25-60^{\circ}C$ and mass velocity in the range of $320-1080kg/m^2s$. Richardson number is calculated based on the conservation of momentum for single water jet and its values are in the range of 0.16-2.67. There is no thermal stratification observed in the water pool. Four condensation regimes are observed, including condensation oscillation, contraction, expansion-contraction and double expansion-contraction shapes. A condensation regime map is present based on steam mass velocity and water temperature. The dimensionless steam plume length increase with the increase of steam mass velocity and water temperature, and its values are in the range of 1.4-9.0. Condensation heat transfer coefficient decreases with the increase of steam mass velocity and water temperature, and its values are in the range of $1.44-3.65MW/m^2^{\circ}C$. New more accurate semi-empirical correlations for prediction of the dimensionless steam plume length and condensation heat transfer coefficient are proposed respectively. The discrepancy of predicted plume length is within ${\pm}10%$ for present experimental results and ${\pm}25%$ for previous researchers. The discrepancy of predicted condensation heat transfer coefficient is with ${\pm}12%$.