• Title/Summary/Keyword: labdane

Search Result 8, Processing Time 0.027 seconds

Bioassay-coupled LC-QTOF MS/MS to Characterize Constituents Inhibiting Nitric Oxide Production of Thuja orientalis

  • Park, Dawon;Shin, Hyeji;Byun, Youngjoo;Lee, Ki Yong
    • Natural Product Sciences
    • /
    • v.27 no.4
    • /
    • pp.293-299
    • /
    • 2021
  • The ethyl acetate fractions prepared from the leaves of Thuja orientalis significantly inhibited nitric oxide (NO) production in lipopolysaccharide-stimulated BV2 microglial cells. According to bioassay-coupled LC-QTOF MS/MS, the components near 22 and 25 mins in the mass chromatogram highly inhibited NO production and were expected to be labdane diterpenes, and the active components were characterized via further isolation. The results of the NO production inhibitory assay of the isolated compounds correlated well with the results of bioassay-coupled LC-QTOF MS/MS. Among the identified constituents, NO production inhibitory activities of 16-hydroxy-labda-8(17),13-diene-15,19-dioic acid butenolide (2) and 15-hydroxypinusolidic acid (3) were newly reported. Taken together, these results demonstrated that LC-QTOF MS/MS coupled with NO production inhibition assay was a powerful tool for accurately predicting new anti-inflammatory constituents in the extracts from natural products. Moreover, it provided a potential basis for broadening the application of bioassay-coupled LC-QTOF MS/MS in natural product research.

Isolation of Diterpene from Larix leptolepis Gorden (일본 잎갈나무재로부터 Diterpene의 단리)

  • Hwang, Byung-Ho;Zhao, Julan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.71-77
    • /
    • 1998
  • To elucidate chemical structure of the wood extractive, wood meal of Larix leptolepis Gorden was extracted with 95% ethanol for 72 hours. The extract was fractionated with organic solvents such as n-hexane, chloroform, diethylether, and ethyl acetate. From the hexane somble fraction of the extractives, a new diterpene compound was isolated and identified as 6-acetoxymanool or 13-hydroxy-8(17), 14-labddienyl-6-acetate by IR, $^1H(^{13}C)$-NMR and Mass spectrometry.

  • PDF

Isolation and Structure Identification of Antibacterial Substances from the Rhizome of Zingiber mioga Roscoe (양하의 근경에서 항균성 물질 분리 및 구조동정)

  • Kim, Seong-Cheol;Song, Eun-Young;Kim, Kong-Ho;Kwon, Hyeog-Mo;Kang, Sang-Heon;Park, Ki-Hun;Jung, Yong-Hwan;Jang, Ki-Chang
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.246-250
    • /
    • 2003
  • In order to isolate antibacterial substances from the rhizome of Zingiber mioga Roscoe, the ethanol extracts was fractionated according to the activity against Bacillus subtilis, B. cereus and Staphylococcus aureus. Three antibacterial substances were isolated and purified by column chromatography and recrystallization. Compounds I and III showed activity against all the tested bacterias and compound II exhibited the activity against B. subtilis and B. cereus S. aureus. Compound I was examined antimicrobial activity against B. subtilis, B. cereus and S. aureus by optical density using Bioscreen C. Compound I showed strong growth inhibition at 10 ppm on B. subtilis and B. cereus for 72 hrs, and at 25 ppm on S. aureus. On the basis of spectrometric studies including $1^H-NMR$, ${13}^C-NMR$, DEPT, IH-lH COSY, HMQC, HMBC and IR, compounds I, II and III were identified as $(E)-8{\beta}(17)-epoxylabd-12-ene-15,16-dial\;(C_{20}H_{30}O_3,\;MW=318)$, galanolactone $(C_{20}H_{30}O_3\;MW=318)$ and galanal A $(C_{20}H_{30}O_3,\;MW=318)$, respectively. These results are the first reports on the isolation of $(E)-8{\beta}(17)-epoxylabd-12-ene-15,16-dial, galanolactone and galanal A from the rhizome of Zingiber mioga.

Regeneration and selection of root resistant Coleus forskohlii A threatened medicinal plant

  • George, Manju M.;Ssubramanian, R.B.;Prajapati, Hiren A.
    • Plant Resources
    • /
    • v.4 no.2
    • /
    • pp.65-74
    • /
    • 2001
  • Coleus forskohlii Briq, of the family Lamiaceae yields a valuable secondary metabolity known as forskolin which is a labdane diterpenoid.. Coleus forskohlii is the only known source of this compound. Forskolin is used in medicine for the treatment of glaucoma, congestive cardiomyopathy and asthma. Morphogenic callus was induced from young leaves on MS medium augmented with NAA and BA. These calli, when subcultured on MS with KN alone gave rise to shoots. The regenerated shoot developed good root system on MS medium fortified with NAA. The fully grown plantlets were transferred to soil for acclimatization. Coleus plant is mainly infected by a fungi Lasiodiplodia theobromae which causes root rot disease. The fungal culture filterate (ECE) of Lasiodiplodia theobromae, has been used in regeneration media to find the MIC and further to select resistant plants to the pathogen. In the present study 40% ECF in the medium showed maximum inhibition and is there fore considered as the MIC level of Coleus forshohlii. This data could prove to be useful for the future for selecting a resistant C.forskohlii plant against the root disease caused by L. theobromae.

  • PDF

Regeneration and selection of root rot resistant Coleus forskohlii A threatened medicinal plant

  • M.George, Manju;Subramanian, R.B.;A.Prajapati, Hiren
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.96-113
    • /
    • 2000
  • Coleus forskohlii Briq. of the family Lamiaceae yields a valuable secondary metabolite known as forskolin which is a labdane diterpenoid. Coleus forskohlii is the only known source of this compound. Forskolin is used in medicine for the treatment of glaucoma, congestive cardiomyopathy and asthma. Morphogenic callus was induced from young leaves on MS medium augmented with NAA and BA. These calli, when subcultured on MS with KN alone gave rise to shoots. The regenerated shoot developed good root system on MS medium fortified with NAA. The fully grown plantlets were transferred to soil for acclimatization. Coleus plant is mainly infected by a fungi Lasiodiplodia theobromae which causes root of disease. The fungal culture filterate (FCF) of Lasiodiplodia theobromae, has been used in regeneration media to find the MIC and further to select resistant plants to the pathogen. In the present study 40% FCF in the medium showed maximum inhibition and is there fore considered as the MIC level of Coleus forskohlii. This data could prove to be useful for the future for selecting a resistant C,forskohlii plant against the root disease caused by L.theobromae.

  • PDF