This research endeavors to explore the enhancement of workforce economic efficiency through the application of nanotechnology, focusing on its economic implications. The findings of this investigation reveal that in recent years, surging global population growth and escalating demands for products and services have led to excessive resource consumption, resulting in adverse environmental consequences and altering environmental conditions-a phenomenon referred to as the economic growth dilemma. Entrepreneurs and economic stakeholders have begun to recognize the importance of sustainable development and the integration of environmental considerations into the production of goods and services. Within this context, knowledge-based economies have emerged as a driving force for sustainable business practices, particularly in the realm of nanotechnology. The integration of nanotechnology across various industries, including pharmaceuticals, agriculture, environmental management, and the chemical and petroleum sectors, as well as energy distribution, has yielded remarkable results. Consequently, this research aims to investigate the application and integration of nanotechnology in environmentally friendly silver nanoparticle production within select industries. Subsequently, it will examine the far-reaching implications of nanotechnology on economic growth and sustainable development.
Currently, many universities offer a variety of programs for students to improve their knowledge and expertise for their career development. Because each program's success depends on students' active participation and passion, the university makes a lot of efforts to motivate them enhance the loyalty toward the school. Several universities in Korea operate their own loyalty program based on their students' activities. However, we need to develop a distinctive loyalty program to suit universities' education environment because the purpose of education is different from existing commercial purpose. This study shows the process that improves problems of loyalty programs that are operated by the K University and suggests new ideas based on design thinking methods. Also, this study includes a process that changes standardized and involuntary loyalty program to interesting loyalty program that induces students' voluntary participation through combining with gamification concept. The method that we suggest in this study is expected to extend various fields.
Purpose: The purpose of this study was to explore the factors influencing evidence-based fall prevention nursing performance of hospital nurses. Methods: A self-reported questionnaire was completed by 344 nurses from three general hospitals from January 20 to March 10, 2013. The study instruments included general characteristics of the subjects, and awareness and performance of fall prevention. Data were analyzed by t test, ANOVA, Pearson's correlation, and multiple regression using SPSS v. 20.0. Results: There were statistically significant differences in awareness and performance according to age, marital status, clinical experiences, workplace, experience of fall prevention education, knowledge of fall prevention, compliance with fall prevention, attention level toward prevention, recognition level of potential falls, nurse responsibility for falls, importance of fall prevention, efforts level for fall prevention, and awareness score of falls prevention. There was a positive correlation among awareness and performance of fall prevention. Based on the multiple regression analysis, compliance with fall prevention, efforts level for fall prevention, and awareness score of falls prevention were significant predictors for performance of fall prevention. The explanation power of the model was 64.1%. Conclusion: The findings revealed the need to develop an effective nursing intervention to improve hospital nurses' performance for fall prevention.
Recently, deep learning and machine learning have attracted considerable attention and many supporting frameworks appeared. In artificial intelligence field, a large body of research is underway to apply the relevant knowledge for complex problem-solving, necessitating the application of various learning algorithms and training methods to artificial intelligence systems. In addition, there is a dearth of performance evaluation of decision making agents. The decision making agent that can find optimal solutions by using reinforcement learning methods designed through this research can collect raw pixel data observed from dynamic environments and make decisions by itself based on the data. The decision making agent uses convolutional neural networks to classify situations it confronts, and the data observed from the environment undergoes preprocessing before being used. This research represents how the convolutional neural networks and the decision making agent are configured, analyzes learning performance through a value-based algorithm and a policy-based algorithm : a Deep Q-Networks and a Policy Gradient, sets forth their differences and demonstrates how the convolutional neural networks affect entire learning performance when using pixel data. This research is expected to contribute to the improvement of artificial intelligence systems which can efficiently find optimal solutions by using features extracted from raw pixel data.
Proceedings of the Korea Contents Association Conference
/
2008.05a
/
pp.851-854
/
2008
Science-based Industry which is future growth industry leading national competitiveness in knowledge-based society is highly science-dependent field when developing technologies. And highly science-based field is absolutely dependent on core scholarly papers. Due to researchers' need of academic papers related to developing technologies and advances of linking technologies, it is possible to link service between patents and scholarly papers. This paper's purpose is to describe on implementation linking service between EPO patent and papers that cited on search reports. First, it describe case study of other linking services. Second, it describes a kinds of data used in linking services. Lastly, it describe implementation of linking different kinds of contents (patents and papers) in KISTI.
International Journal of Computer Science & Network Security
/
v.21
no.8
/
pp.238-246
/
2021
The rapid rise of the Internet and social media has resulted in a large number of text-based reviews being placed on sites such as social media. In the age of social media, utilizing machine learning technologies to analyze the emotional context of comments aids in the understanding of QoS for any product or service. The classification and analysis of user reviews aids in the improvement of QoS. (Quality of Services). Machine Learning algorithms have evolved into a powerful tool for analyzing user sentiment. Unlike traditional categorization models, which are based on a set of rules. In sentiment categorization, Bidirectional Long Short-Term Memory (BiLSTM) has shown significant results, and Convolution Neural Network (CNN) has shown promising results. Using convolutions and pooling layers, CNN can successfully extract local information. BiLSTM uses dual LSTM orientations to increase the amount of background knowledge available to deep learning models. The suggested hybrid model combines the benefits of these two deep learning-based algorithms. The data source for analysis and classification was user reviews of Indian Railway Services on Twitter. The suggested hybrid model uses the Keras Embedding technique as an input source. The suggested model takes in data and generates lower-dimensional characteristics that result in a categorization result. The suggested hybrid model's performance was compared using Keras and Word2Vec, and the proposed model showed a significant improvement in response with an accuracy of 95.19 percent.
Lee, Hyong-Euk;Kim, Yong-Hwi;Lee, Tae-Youb;Park, Kwang-Hyun;Kim, Yong-Soo;Cho, Joon-Myun;Bien, Z. Zenn
Journal of the Korean Institute of Intelligent Systems
/
v.17
no.2
/
pp.244-251
/
2007
Intention reading technique is essential to provide personalized services toward more convenient and human-friendly services in complex ubiquitous environment such as a smart home. If a system has knowledge about an user's intention of his/her behavioral pattern, the system can provide mote qualified and satisfactory services automatically in advance to the user's explicit command. In this sense, learning capability is considered as a key function for the intention reading technique in view of knowledge discovery. In this paper, ore introduce a personalized media control method for a possible application iii a smart home. Note that data pattern such as human behavior contains lots of inconsistent data due to limitation of feature extraction and insufficiently available features, where separable data groups are intermingled with inseparable data groups. To deal with such a data pattern, we introduce an effective engineering approach with the combination of fuzzy logic and probabilistic reasoning. The proposed learning system, which is based on IFCS (Iterative Fuzzy Clustering with Supervision) algorithm, extract probabilistic fuzzy rules effectively from the given numerical training data pattern. Furthermore, an extended architectural design methodology of the learning system incorporating with the IFCS algorithm are introduced. Finally, experimental results of the media contents recommendation system are given to show the effectiveness of the proposed system.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.25
no.3
/
pp.165-189
/
2014
This study examined the current practices of Research Data Management (RDM) services recently built and implemented at research university libraries in the U.S. by analyzing the components of the services and the contents presented in their web sites. The study then analyzed the content of web pages describing the services provided by 31 Research Universities/Very High research activity determined based on the Carnegie Classification. The analysis was based on 9 components of the services suggested by previous studies, including (1) DMP support; (2) File organization; (3) Data description; (4) Data storage; (5) Data sharing and access; (6) Data preservation; (7) Data citation; (8) Data management training; (9) Intellectual property of data. As a result, the vast majority of the universities offered the service of DMP support. More than half of the universities provided the services for describing and preserving data, as well as data management training. Specifically, RDM services focused on offering the guidance to disciplinary metadata and repositories of relevance, or training via individual consulting services. More research and discussion is necessary to better understand an intra- or inter-institutional collaboration for implementing the services and knowledge and competency of librarians in charge of the services.
In Knowledge Q&A services where information is created by unspecified users, document quality is an important factor of user satisfaction with search results. Previous work on quality prediction of Knowledge Q&A documents evaluate the quality of documents by using non-textual information, such as click counts and recommendation counts, and focus on enhancing retrieval performance by incorporating the quality measure into retrieval model. Although the non-textual information used in previous work was proven to be useful by experiments, data sparseness problem may occur when predicting the quality of newly created documents with such information. To solve data sparseness problem of non-textual features, this paper proposes new features for document quality prediction, namely text-confidence features, which indicate how trustworthy the content of a document is. The proposed features, extracted directly from the document content, are stable against data sparseness problem, compared to non-textual features that indirectly require participation of service users in order to be collected. Experiments conducted on real world Knowledge Q&A documents suggests that text-confidence features show performance comparable to the non-textual features. We believe the proposed features can be utilized as effective features for document quality prediction and improve the performance of Knowledge Q&A services in the future.
Journal of the Korean Society for information Management
/
v.21
no.3
/
pp.251-267
/
2004
The purpose of this study is to generate the local level knowledge structure of a single document, similar to end-of-the-book indexes and table of contents of printed material through the use of term clustering and cluster representative term selection. Furthermore, it aims to analyze the functionalities of the knowledge structure. and to confirm the applicability of these methods in user-friend1y information services. The results of the term clustering experiment showed that the performance of the Ward's method was superior to that of the fuzzy K -means clustering method. In the cluster representative term selection experiment, using the highest passage frequency term as the representative yielded the best performance. Finally, the result of user task-based functionality tests illustrate that the automatically generated knowledge structure in this study functions similarly to the local level knowledge structure presented In printed material.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.