Over the past centuries, industrialization in developed and developing countries has had a negative impact on global warming, releasing $CO_2$ emissions into the Earth's atmosphere. In recent years, the transportation sector, which emits one-third of total $CO_2$ emissions in the United States, has adapted by implementing a climate change action plan to reduce $CO_2$ emissions. Having an environmental policy might be an essential factor in mitigating the man-made global warming threats to protect public health and the coexistent needs of current and future generations; however, to my best knowledge, no research has been conducted in such a context with appropriate statistical validation process to evaluate the effects of climate change policy on $CO_2$ emission reduction in recent years in the U.S. transportation. The empirical findings using an entity fixed-effects model with valid statistical tests show the positive effects of climate change policy on $CO_2$ emission reduction in a state. With all the 49 states joining the climate change action plans, the U.S. transportation sector is expected to reduce its $CO_2$ emissions by 20.2 MMT per year, and for the next 10 years, the cumulated $CO_2$ emission reduction is projected to reach 202.3 MMT, which is almost equivalent to the $CO_2$ emissions from the transportation sector produced in 2012 by California, the largest $CO_2$ emission state in the nation.
Journal of Information Science Theory and Practice
/
제6권4호
/
pp.28-38
/
2018
Wikipedia is composed of millions of articles, each of which explains a particular entity with various languages in the real world. Since the articles are contributed and edited by a large population of diverse experts with no specific authority, Wikipedia can be seen as a naturally occurring body of human knowledge. In this paper, we propose a method to automatically identify key entities and relations in Wikipedia articles, which can be used for automatic ontology construction. Compared to previous approaches to entity and relation extraction and/or identification from text, our goal is to capture naturally occurring entities and relations from Wikipedia while minimizing artificiality often introduced at the stages of constructing training and testing data. The titles of the articles and anchored phrases in their text are regarded as entities, and their types are automatically classified with minimal training. We attempt to automatically detect and identify possible relations among the entities based on clustering without training data, as opposed to the relation extraction approach that focuses on improvement of accuracy in selecting one of the several target relations for a given pair of entities. While the relation extraction approach with supervised learning requires a significant amount of annotation efforts for a predefined set of relations, our approach attempts to discover relations as they occur naturally. Unlike other unsupervised relation identification work where evaluation of automatically identified relations is done with the correct relations determined a priori by human judges, we attempted to evaluate appropriateness of the naturally occurring clusters of relations involving person-artifact and person-organization entities and their relation names.
본 연구에서는 명명된 실체 인식 기법에 기초한 정보 추출 모듈을 개발하고 평가하였다. 본 논문의 제시된 목적을 위해, 모듈은 사전 지식 없이 임의의 문서에서 우편 주소 정보를 추출하는 문제에 적용하도록 설계되었다. 정보 기술 실무의 관점에서, 우리의 접근방식은 유니그램 기반 키워드 매칭과 비교하여 일반화된 기법인 확률론적 n-gram(바이오그램 또는 트리그램) 방법이라고 말할 수 있다. 모델을 순차적으로 적용하지 않고 문장검출, 토큰화, POS 태그를 재귀적으로 적용하는 것이 우리의 접근법과 자연어 처리에 채택된 전통적인 방법 사이의 주요한 차이점이다. 이 논문에서는 약 2천 개의 문서를 포함한 시험 결과를 제시한다.
Jihae Suh;Jinsoo Park;Buomsoo Kim;Hamirahanim Abdul Rahman
Asia pacific journal of information systems
/
제28권2호
/
pp.75-92
/
2018
Conceptual modeling is well suited as a subject that constitutes the "core" of the Information Systems (IS) discipline and has grown in response to IS development. Several modeling grammars and methods have been studied extensively in the IS discipline. Previous studies, however, present deficiencies in research methods and even put forward contradictory results about the ternary relationship in conceptual modeling. For instance, some studies contend that the semantics of a binary relationship are better for novices, but others argue that a ternary relationship is better than three binary relationships when the association among three entity types clearly exists. The objective of this research is to acquire complete and accurate understanding of the ternary relationship, specifically to understand practitioners' modeling performance when utilizing either a ternary or binary relationship. To the best of our knowledge, no previous work clearly compares real-world modeler performance differences between binary and ternary representations. By investigating practitioners' understanding of ternary relationship and identifying practitioners' cognition, this research can broaden the perspective on conceptual modeling.
본 논문은 자연언어 문장을 지식베이스의 지식 골격에 맞추어 지식의 형태로 변환하기 위한 과정 중의 하나인 관계추출(Relation Extraction)을 목표로 한다. 특히, 문장 내에 있는 서술어(Predicate)에 집중하여 서술어와 관련성 높은 지식베이스 프로퍼티(Property or Relation)를 찾아내고, 이를 통해 두 개체(Entity)간의 의미를 파악하는 관계추출에 초점을 둔다. 이에 널리 활용되는 원격지도학습(Distant Supervision) 접근 방식에 따라, 지식베이스와 자연언어 텍스트로부터 원격 학습이 가능한 레이블(Labeled) 데이터를 자동으로 마련하여 지식베이스 프로퍼티에 대한 어휘화 작업을 수행한다. 즉, 두 개체 사이의 관계로 표현되는 서술어와, 온톨로지로 정의할 수 있는 프로퍼티와의 연결을 통해, 텍스트로부터 구조적 정보를 생성할 수 있는 기반을 마련하고 최종적으로 지식베이스 확장의 가능성을 열어준다.
정보기술의 발전에 따라 아카이브의 디지털화가 가속화되고 있다. 그런데 전통적인 방식의 디지털 아카이브는 기록을 효과적으로 검색하고 연계하고 이해하는 데 한계가 있다. 본 논문은 디지털 아카이브의 활용성을 극대화하기 위한 방안으로 관계 중심의 지식그래프 방식을 제안한다. 디지털 아카이브의 사례인 '1997 외환위기 아카이브'의 특징을 검토하고, 아카이브에 포함된 모든 개체와 개체 사이의 관계는 RiC-O(Records in Contexts-Ontology) 기반의 지식그래프로 구축한다. 본 연구의 결과인 외환위기 지식그래프는 1997 외환위기 아카이브의 모든 개체를 기계가 처리할 수 있는 형식으로 구축한다. 디지털 아카이브와 비교해 지식그래프 접근은 개체의 정보, 개체 사이의 관계를 정확히 탐색할 수 있고, 이를 통해 의미검색, 지능형 서비스에 활용될 수 있다.
With biomedical literature expanding so rapidly, there is an urgent need to discover and organize knowledge extracted from texts. Although factual databases contain crucial information the overwhelming amount of new knowledge remains in textual form (e.g. MEDLINE). In addition, new terms are constantly coined as the relationships linking new genes, drugs, proteins etc. As the size of biomedical literature is expanding, more systems are applying a variety of methods to automate the process of knowledge acquisition and management. In my talk, I focus on the project, GENIA, of our group at the University of Tokyo, the objective of which is to construct an information extraction system of protein - protein interaction from abstracts of MEDLINE. The talk includes (1) Techniques we use fDr named entity recognition (1-a) SOHMM (Self-organized HMM) (1-b) Maximum Entropy Model (1-c) Lexicon-based Recognizer (2) Treatment of term variants and acronym finders (3) Event extraction using a full parser (4) Linguistic resources for text mining (GENIA corpus) (4-a) Semantic Tags (4-b) Structural Annotations (4-c) Co-reference tags (4-d) GENIA ontology I will also talk about possible extension of our work that links the findings of molecular biology with clinical findings, and claim that textual based or conceptual based biology would be a viable alternative to system biology that tends to emphasize the role of simulation models in bioinformatics.
지식 그래프 기반의 질문 응답 문제는 자연어 질문들에 대한 깊은 이해뿐만 아니라, 대규모 지식 그래프 상에서 올바른 답변을 찾기 위한 효과적인 추론 능력을 필요로 한다. 본 논문에서는 다중 홉 추론을 요구하는 복잡한 자연어 질문에 대해 연관 지식 그래프 위에서 답변 추론을 효과적으로 수행할 수 있는 심층 신경망 모델을 제안한다. 제안 모델에서는 지식 그래프 상의 각 개체 노드와 이웃 노드 간의 양방향 특징 전파를 허용할뿐만 아니라, 두 이웃 노드 쌍 간의 맥락 정보까지 활용할 수 있는, 표현력이 뛰어난 쌍 선형 그래프 신경망(BGNN)을 이용한다. 본 논문에서는 오픈 도메인의 지식 베이스인 Freebase, 자연어 질문 응답을 위한 벤치마크 데이터 집합들인 WebQuestionsSP와 MetaQA를 이용한 실험들을 통해, 제안 모델의 효과와 우수성을 확인하였다.
과학적 지식을 얻는 과정은 연구자의 연구를 통해 이루어진다. 연구자들은 과학의 불확실성을 다루고 과학적 지식의 확실성을 구축해나간다. 즉, 과학적 지식을 얻기 위해서 불확실성은 반드시 거쳐가야 하는 필수적인 단계로 인식되고 있다. 현존하는 불확실성의 특성을 파악하는 연구는 언어학적 접근의 hedging 연구를 통해 소개되었으며 컴퓨터 언어학에서 수작업 기반으로 불확실성 단어 코퍼스를 구축해왔다. 기존의 연구들은 불확실성 단어의 단순 출현 빈도를 기반으로 특정 학문 영역의 불확실성의 특성을 파악해오는데 그쳤다. 따라서 본 연구에서는 문장 내 생의학적 주장이 중요한 역할을 하는 생의학 문헌을 대상으로 불확실성 단어 기반 과학적 지식의 패턴을 시간의 흐름에 따라 살펴보고자 한다. 이를 위해 생의학 온톨로지인 UMLS에서 제공하는 의미적 술어를 기반으로 생의학 명제를 분석하였으며, 학문 분야의 패턴을 파악하는데 용이한 DMR 토픽 모델링을 적용하여 생의학 개체의 불확실성 기반 토픽의 동향을 종합적으로 파악하였다. 시간이 흐름에 따라 과학적 지식의 표현은 불확실성이 감소하는 패턴으로 연구의 발전이 이루어지고 있음을 확인하였다.
This study uses [the instrument of ageing anxiety] in order to find if a negative prejudice against the old affects the attitude toward sex of the aged. The result shows no significant relation between ageing anxiety and the knowledge of and attitude toward sex of the aged. However, it does show that the higher the ageing anxiety is, the lower the knowledge of sex and the more restrictive the attitude toward it. The knowledge of and attitude toward sex of the aged shows meaninggul changes after education. Nursing students who were educated come to have more knowledge about and are more open to it. This result supports the preposition of this study. As society grows older the endeavour to guarantee a high-quality life for the old is necessary and the old should be regarded as an entity which has its own characteristic desires. Especially for the old to enjoy a good life as a sexual being, the mystical barriers about sex and old age ought to be removed. In the future the old themselves may maintain sexual desires regardless of age and society will be required to correct its prejudice against the old having sex. Particularly nursing students, as an effort to provide the old with overall care, should examine the elderly's sexual desires in a physical, psychological, and social context and consider the normal sexual changes occuring during the aging process and finally integrate this information into their nursing plans. In order to fulfill this role successfully they should overcome their own prejudice and educate themselves about this particular problem. As the proportion of the old becomes bigger and the concern about the quality of their life grows, sex among the old will become more important in the nursing field. By putting an educational mediation programme into operation with nursing students and estimating the effect, this study supplies the foundation to activate new educational programmes. In short it tells us that education can be a practical method to confront the myth and conventions concerning sex among the aged.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.