• Title/Summary/Keyword: knock

Search Result 424, Processing Time 0.02 seconds

Effect of Ethane 1,2-Dimethane Sulfonate(EDS) on the Apoptosis in the Rat Epididymis (흰쥐 부정소에서의 세포자연사에 미치는 Ethane 1,2-Dimethane Sulfonate(EDS)의 효과)

  • Son, Hyeok-Jun;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.3
    • /
    • pp.203-209
    • /
    • 2006
  • Ethane 1,2-Dimethane sulfonate(EDS), a toxin which specifically kills Leydig cells(LC), has been widely used to prepare the reversible testosterone(T) depletion rat model. Previous studies including our own clearly demonstrated that the dramatic weight loss of the T-dependent accessory sex organs such as epididymis and seminal vesicle in this 'LC knock-out' rats. These weight loss could be derived from massive and abrupt death of the cells via apoptotic process. The present study was performed to test the effect of EDS administration on the expression of some apoptotic genes in the rat epididymis. Adult male Sprague-Dawley rats($300{\sim}350$ g B.W.) were injected with single dose of EDS(75 mg/kg, i.p.) and sacrificed on Weeks 0, 1, 2, 3, 4, 5, 6 and 7. Tissue weights and the numbers of the epididymal sperm were measured. The transcriptional activities of the bcl-2, bax, Fas and Fas ligand(Fas-L) were evaluated by semi-quantitative RT-PCR. As expected, the weights and the sperm counts of epididymis declined progressively after the EDS treatment during Week 1 and 2. These decrements were discontinued with a gradual return towards normal during Weeks $5{\sim}7$, although the maximal recoveries of the epididymal weights(71%) and sperm count(38%) were subnormal on Week 7. The initial level of bcl-2 transcripts persisted to Week 6 then elevated significantly on Week 7. The level of bax transcripts significantly decreased on Week 6, and no remarkable change was found in the rest of the experimental period. The transcripts for the Fas in epididymis elevated during Weeks $1{\sim}2$, returned to normal on Week 3, and the level persisted to the Week 7. Similarly, the level of Fas-L transcripts elevated during Weeks $1{\sim}3$ and returned to normal after Week 4. Our results demonstrated the transient T depletion by EDS administration could induce the changes in expression of the apoptotic genes in rat epididymis. The activation of Fas and Fas-L in the epididymis of EDS-treated rats might be responsible for the initial apototic process and consequently the tissue damage and the sperm loss. Future studies will attempt to determine the precise molecular mechanism(s) of apoptosis in the rat epididymis.

  • PDF

Resveratrol Ameliorates NMDA-induced Mitochondrial Injury by Enhanced Expression of Heme Oxygenase-1 in HT-22 Neuronal Cells (NMDA를 처리한 HT-22 신경세포에서 미토콘드리아 손상을 완화하는 레스베라트롤의 보호 효과와 헴 산화효소-1의 역할)

  • Kang, Jae Hoon;Woo, Jae Suk
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.11-22
    • /
    • 2022
  • N-methyl-D-aspartate (NMDA) receptors have received considerable attention regarding their involvement in glutamate-induced neuronal excitotoxicity. Resveratrol has been shown to exhibit neuroprotective effects against this kind of overactivation, but the underlying cellular mechanisms are not yet clearly understood. In this study, HT-22 neuronal cells were treated with NMDA in Mg2+-free buffer and subsequently used as an experimental model of glutamate excitotoxicity to elucidate the mechanisms of resveratrol-induced neuroprotection. We found that NMDA treatment causes a drop in MTT reduction ability, disrupts inside-negative transmembrane potential of mitochondria, depletes cellular ATP levels, and stimulates intracellular ROS production. Double fluorescence imaging studies demonstrated an increased formation of mitochondrial permeability transition (MPT) pores accompanied by apoptotic cell death, while cobalt protoporphyrin and bilirubin showed protective effects against NMDA-induced mitochondrial injury. On the other hand, zinc protoporphyrin IX significantly attenuated the protective effects of resveratrol which was itself shown to enhance heme oxygenase-1 (HO-1) mRNA and protein expression levels. In cells transfected with HO-1 small interfering RNA, resveratrol failed to suppress the NMDA-induced effects on MTT reduction ability and MPT pore formation. The present study suggests that resveratrol may prevent mitochondrial injury in NMDA- treated HT-22 cells and that enhanced expression of HO-1 is involved in the underlying cellular mechanism.

CLK3 is a Novel Negative Regulator of NF-κB Signaling (NF-κB 신호경로에서 CLK3의 새로운 음성 조절자로서의 기능)

  • Byeol-Eun, Jeon;Chan-Seong, Kwon;Ji-Eun, Lee;Ye-Lin, Woo;Sang-Woo, Kim
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.833-840
    • /
    • 2022
  • Chronic inflammation has been shown to be closely associated with tumor development and progression. Nuclear factor kappa B (NF-κB) is composed of a family of five transcription factors. NF-κB signaling plays a crucial role in the inflammatory response and is often found to be dysregulated in various types of cancer, making it an attractive target in cancer therapeutics. In this study, CDC-like kinase 3 (CLK3) was identified as a novel kinase that regulates the NF-κB signaling pathway. Our data demonstrate that CLK3 inhibits the canonical and non-canonical NF-κB pathways. Luciferase assays following the transient or stable expression of CLK3 indicated that this kinase inhibited NF-κB activation mediated by Tumor necrosis factor-alpha (TNFα) and Phorbol 12-myristate 13-acetate (PMA), which are known to activate NF-κB signaling via the canonical pathway. Consistent with data on the ectopic expression of CLK3, CLK3 knockdown using shRNA constructs increased NF-κB activity 1.5-fold upon stimulation with TNFα in HEK293 cells compared with the control cells. Additionally, overexpression of CLK3 suppressed the activation of this signaling pathway induced by NF-κB-inducing kinase (NIK) or CD40, which are well-established activators of the non-canonical pathway. To further examine the negative impact of CLK3 on NF-κB signaling, we performed Western blotting following the TNFα treatment to directly identify the molecular components of the NF-κB pathway that are affected by this kinase. Our results revealed that CLK3 mitigated the phosphorylation/activation of transforming growth factor-α-activated kinase 1 (TAK1), inhibitor of NF-κB kinase alpha/beta (IKKα/α), NF-κB p65 (RelA), NF-κB inhibitor alpha (IκBα), and Extracellular signal-regulated kinase 1/2-Mitogen-activated protein kinase (ERK1/2-MAPK), suggesting that CLK3 inhibits both the NF-κB and MAPK signaling activated by TNFα exposure. Further studies are required to elucidate the mechanism by which CLK3 inhibits the canonical and non-canonical NF-κB pathways. Collectively, these findings reveal CLK3 as a novel negative regulator of NF-κB signaling.

The Role of Ref-1 in the Differentiation Process of Monocytic THP-1 Cells (단핵구세포주 THP-1의 분화과정에서 Ref-1의 역할)

  • Da Sol Kim;Kang Mi Kim;Koanhoi Kim;Young Chul Park
    • Journal of Life Science
    • /
    • v.34 no.4
    • /
    • pp.271-278
    • /
    • 2024
  • Redox factor (Ref)-1, a ubiquitously expressed protein, acts as a modulator of redox-sensitive tran- scription factors and as an endonuclease in the repair pathway of damaged DNA. However, the function of Ref-1 in the differentiation of monocytes into macrophages has not been defined. In this study, we investigated the effects of Ref-1 on the monocyte differentiation process using the human monocytic cell line THP-1. The differentiation agent PMA increased cell adhesion over time and showed a sig- nificant increase in phagocytic function but decreased the intracellular amount of Ref-1. Ref-1 inhibitor E3330 and Ref-1 knockdown using the siRNA technique reduced cell adhesion and the expression of differentiation markers, such as CD14, ICAM-1, and CD11b, by PMA stimulation. This means that the role of Ref-1 is absolutely necessary in the initial process of differentiating THP-1 cells stimulated by PMA. Next, the distribution of Ref-1 was examined in the cytoplasm and nucleus of THP-1 cells stimulated with PMA. Surprisingly, PMA stimulation resulted in the rapid translocation of Ref-1 to the nucleus. To prove that movement of Ref-1 to the nucleus is required for monocyte differentiation, a Ref-1 vector with the nuclear localization sequence (NLS) deleted was used. As a result, overexpression of ∆NLS Ref-1, which restricted movement to the nucleus, suppressed the expression of differentiation markers and notably reduced phagocytic function in PMA-stimulated THP-1 cells. In conclusion, these data suggest that the differentiation of monocytic THP-1 cells requires Ref-1 nuclear translocation during the initial process of biochemical events following stimulation from PMA.