• Title/Summary/Keyword: knee movement

Search Result 407, Processing Time 0.028 seconds

Excitation Frequency Characteristics of a Conductive Fabric Sensor Using the Bio-impedance for Estimating Knee Joint Movements (슬관절 운동 평가를 위한 생체 임피던스 측정용 전도성 섬유 센서의 여기 주파수별 특성 평가)

  • Lee, Byung-Woo;Lee, Chung-Keun;Kim, Jin-Kwon;Jeong, Wan-Jin;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1427-1433
    • /
    • 2011
  • This study describes a conductive fabric sensor and determines an optimum excitation frequency of the sensor to evaluate knee joint movements. Subjects were composed of 15 males (age: $30.7{\pm}5.3$) with no known problems with their knee joints. The upper side of subjects' lower limbs was divided into two areas and the lower side of subjects' lower limbs was divided into three areas. The sensors were attached to 1 for 3 spot from a hip joint and to 3 for 4 spot from a knee joint which are the optimum conductive fabric sensor configuration to evaluate knee joint movements. As a result, the optimum excitation frequency for evaluating knee joint movements using conductive fabric sensors was 25 kHz. Average and standard deviation of bio-impedance changes from 15 subjects were $92.1{\pm}137.2{\Omega}$ at 25 kHz. The difference of bio-impedance changes between 25 kHz and 50 kHz was statistically significant (p<0.05) and the difference of bio-impedance changes between 25 kHz and 100 kHz was also statistically significant (p<0.001). These results showed that conductive fabric sensors are more sensitive to measure bio-impedance for evaluating knee joint movements as an excitation frequency decreases.

The Influence of Augmented Reality based Knee Exercise in Short Period on Range of Motion and Balance - Pilot study (증강현실 기반의 단기간 무릎운동이 관절가동범위와 균형에 미치는 영향 - 예비연구)

  • Im, JongHun;Yu, JaeHo
    • Archives of Orthopedic and Sports Physical Therapy
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • Purpose: This study investigated the effect of the augmented reality (AR)-based knee joint short period exercise program and used a motion analyzer with a 3D camera to determine the range of motion and dynamic balance and further investigate the effects of therapeutic exercise on patients. Methods: This study used AR-based motion analysis and a Y-balance test to measure the range of motion (ROM) of each joint: the hip joint and the knee joint. After the measurements, an exercise program was applied to the subjects, using the knee motion program function, and the muscles of the quadriceps femoris and the hamstring were stretched or strengthened. Results: Our results showed knee joint extension at the dominant hip joint flexion position. While there was no significant difference (p>.05) at this position, there were significant differences in the non-dominant hips, unbalanced knee joint flexion, and superior knee joint flexion (p<.05). The Y-balance test using the non-dominant leg supported by the dominant legs showed that the absolute reach was $69.70{\pm}7.06cm$ before the exercise, and the absolute reach after the exercise was $77.56{\pm}6.09cm$ (p<.05). Conclusions: There was a significant difference when the movement of the lower limbs supported the superior limbs, and a significant difference was found in the ROM when the non-dominant side supported the dominant side. Therefore, the AR-based exercise program improves the balance of the human body and the range of motion of the joints, and research that aims to improve patients abilities should continue.

The Effects of Performing Bridge Exercise and Hip Thrust Exercise using Various Knee Joint Angles on Trunk and Lower Body Muscle Activation in Healthy Subjects

  • Kim, Dongsu;Jung, Jongchan;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.2
    • /
    • pp.205-211
    • /
    • 2021
  • Objective: This study aimed to identify the effects of assuming different knee angles and hip abduction during bridge exercise and hip thrust exercise on lower body muscle activity. Design: Cross-sectional study Methods: Thirty-three healthy adults (18 men and 15 women) were instructed to perform the bridge and hip thrust exercises while randomly assuming 120°, 90° and 60° of knee flexion and 0° and 30° of hip abduction. EMG data (%maximum voluntary isometric contraction) were recorded three times from the erector spinae (ES), gluteus maximus (GM) and biceps femoris (BF) muscles of participant's dominant side and the mean values were analyzed. Results: The results showed that, during the hip thrust compared to the bridge exercise, there was significantly greater gluteus maximus muscle activity in all hip conditions while the biceps femoris activity was significantly less, and the erector spinae muscle activity was significantly greater with 30° of hip abduction (p<0.05). With all exercises, the erector spinae and the biceps femoris exhibited significantly greater muscle activity with 60° of knee flexion compared to 90° and 120° of knee flexion (p<0.05), and significantly greater muscle activity with 90° compared to 120° of knee flexion (p<0.05). In the case of the gluteus maximus, greater muscle activity was exhibited with 120° compared to 60° of knee flexion with all hip abduction conditions (p<0.05). Conclusions: It was effective for muscle activation of main agonists such as the gluteus maximus and erector spinae during thrust exercise, and the change in knee flexion angle was effective for muscle activation of the gluteus maximus. Therefore, it is considered that this study can be used as a selective indicator of the target movement angle during hip strengthening exercise for specific muscles.

Kinematic Sequence Patterns according to Movement Time of Choku-tsuki in Karate Kumite (카라테 구미테 정면 지르기의 동작수행시간에 따른 운동학적 시퀀스 패턴)

  • Kim, Tae-Whan;Kim, Mi-Sun;Kim, Joo-Nyeon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.3
    • /
    • pp.225-234
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the kinematic sequence patterns according to movement times during Karate choku-tsuki. Method: Ten Korea national Karate athletes participated in this study. Participants asked to perform jodan and chudan choku-tsuki. 30 infrared cameras were used to measure angular kinematic of elbow, shoulder, trunk, pelvis, hip, knee, ankle. Results: The two-way repeated measures ANOVA revealed significant effects for the joints (p<.05). But no significant effect for the movement time and interaction of joints x movement time existed for the kinematic sequence variables. Conclusion: For karate kumite players to reduce the movement time of punch, it is necessary to train kinematic sequences that allow each joint to rotate at a relatively similar timing.

Strength Evaluation of Sin91e-Radius Total Knee Replacement (TKR) (인공무릎관절의 단축법위 회전시 근력정가)

  • Wan, Jin-Young;Sub, Kwak-Yi
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.484-489
    • /
    • 2004
  • Artificial joint replacement is one of the major surgical advances of the 21th century. The primary purpose of a TKA (Total Knee Arthroplasty) is to restore normal knee Auction. Therefore, ideally, a TKA should: (a) maintain the natural leverage of the knee joint muscles to ensure generating adequate knee muscle moments to accomplish daily tasks such as rising from a chair or climbing stairs;(b) allow the same range of motion as an complete knee; and (c) provide adequate knee joint stability. Four individuals (2 peoples after surgery one year and 2 peoples after surgery three years) participated in this study. All they were prescreened for health and functional status by the same surgeon who performed the operations. Two days of accommodation practice occurred prior to the actual strength testing. The isometric strength (KIN-COM III) of the quadriceps and hamstring were measured at 60$^\circ$ and 30$^\circ$ of knee flexion, respectively. During isokinetic concentric testing, the range of motion was between 10$^\circ$ to 80$^\circ$ of knee flexion (stand-to-sit) and extension (sit-to-stand). for a given test, the trial exhibiting maximum torque was analyzed. A 16-channel MYOPACTM EMG system (Run Technologies, Inc.) was used to collect the differential input surface electromyographic (EMG) signals of the vastus medialis (VM), vastus lateralis(VL), rectus femoris (RF) during sit-to-stand and stand-to-sit tests. Disposable electrodes (Blue SensorTM, Medicotest, Inc.) were used to collect the EMG signals. The results were as follows; 1. Less maximum concentric (16% and 21% less for 1 yew man and 3 years mm, respectively) and isometric (12% and 29%, respectively) quadriceps torque for both participants. 2.14% less maximum hamstrings concentric torque for 1 year man but 16% greater torque for 3 years mm. However, 1 year man had similar hamstring isometric peak torque for both knees. 3. Less quadriceps co-contraction by 1 year man except for the VM at 10$^\circ$-20$^\circ$ and 30$^\circ$-50$^\circ$ range of knee flexion.

A Comparative Analysis of Horizontal Rotation Movements for Different Ball Course during Two-handed Backhand Drive Stroke in Tennis (테니스 양손 백핸드 드라이브 스트로크 시 볼 방향성에 따른 수평회전운동 비교분석)

  • Seo, Kook-Eun;Chung, Yong-Min;Kang, Young-Taek
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.293-300
    • /
    • 2015
  • Objective : The purpose of this study was to compare the kinematic data of the horizontal rotation movements of shoulder, hip, knee during two-handed backhand drive stroke according to two different ball directions. Methods : The kinematic variables were analyzed such as the joint angles of the lower body, horizontal rotation angles of the shoulder, hip, inter-knee segment, body twist angle and difference in angle of forward swing. Two-handed backhand drive stroke was analyzed through a three-dimensional motion analysis. The collected data were analyzed by a paired t-test, and the statistical significant value was set at ${\alpha}=.05$. Results : The findings of this study were as follows; First, there was no difference in the total angles of lower limb joints from the forward swing position to impact posterior. Second, there was no difference in the horizontal rotation angles of E1 shoulder, hip, and E2 shoulder but the horizontal rotation angles of E1 knee, E2 hip, knee, E3, and E4 shoulder, hip, and knee were different in all events. Third, there was no difference in the body twist angle of the maximum horizontal rotation. In addition, there was no difference in the angle of the body twist by the ball direction in the shoulder-hip, the hip-knee and the shoulder-knee. Conclusion : Horizontal rotation angle determines ball directions.

Effect of PNF Lower Extremity Pattern on Selective Muscle Contraction of the Contralateral Lower Extremity in Healthy Subjects (정상인에 적용한 PNF 하지 패턴이 반대측 하지의 선택적 근수축에 미치는 영향)

  • Kang, Tae-Wook;Jung, Ju-Hyeon
    • PNF and Movement
    • /
    • v.18 no.2
    • /
    • pp.255-263
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the effect of proprioceptive neuromuscular facilitation (PNF) lower extremity pattern on the dominant leg on muscle activity of the lower extremity supported by the ground. Methods: The subjects were 20 healthy males living in Busan. All subjects performed four direction PNF lower extremity patterns, and data were collected by surface electromyography from the gluteus medius (GM), tensor fascia latae (TFL), vastus medialis oblique (VMO), vastus lateralis oblique (VLO), and semitendinosus (STD) muscles of the opposite lower extremity during PNF lower extremity pattern. The PNF lower extremity pattern applied to the dominant leg was (1) flexion/adduction/external rotation with knee flexion; (2) extension/abduction/internal rotation with knee extension; (3) flexion/abduction/internal rotation with knee flexion; and (4) extension/adduction/external rotation with knee extension pattern, repeated 3 times per pattern and using the average value of the collected results. Collected muscle activity values were analyzed by one-way ANOVA, and post-hoc Tukey testing was performed to check between-group differences. The statistical significance level was set at α = 0.05. Results: GM and TFL flexion/abduction/internal rotation pattern with knee flexion was significantly higher than other patterns. VMO and VLO extension/adduction/external rotation pattern with knee extension was significantly higher than other patterns. STD flexion/adduction/external rotation pattern with knee flexion was significantly higher than other patterns. Conclusion: The study confirms differences in lower extremity muscle activity for the PNF lower extremity pattern, indicating that selective muscle contraction induction is possible using a pattern appropriate to the purpose of treatment.

Muscle Contraction Onset Time Characteristics of Gluteus Maximus and Hamstring According to Knee Flexion Angles During Prone Hip Extension (엉덩관절 폄 시 무릎 굴곡 각도에 따른 큰볼기근과 뒤넙다리근의 근수축 개시시간 특성)

  • Kim, Yong-Wook;Song, Je-Hyun;Jeong, Yeon-Woo;Lee, Kyeoung-Seok;Guk, Ga-Yeong;Yun, Sung-Joon
    • PNF and Movement
    • /
    • v.18 no.3
    • /
    • pp.375-382
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the muscle contraction onset time characteristics of the gluteus maximus, semitendinosus, and biceps femoris muscles at different knee flexion angles in individuals with shortened or over-lengthened hamstrings performing prone hip extension. Methods: Twenty-six participants were divided into a hamstring shortened group (n = 12) and hamstring lengthened group (n = 14). Wireless surface electromyography was used to verify the muscle onset time of the gluteus maximus, semitendinosus, and biceps femoris when performing prone hip extension at different knee flexion angles. Results: There were significant differences in the muscle onset times of the semitendinosus and biceps femoris between the hamstring shortened group and hamstring lengthened group (p < 0.05). In addition, there was a significant difference in the muscle contraction onset times among of the gluteus maximus, semitendinosus, and biceps femoris muscles when performing prone hip extension at a knee flexion of 90° in the hamstring shortened group (p < 0.05) and a knee flexion angle of 0° in the hamstring lengthened group (p < 0.05). Conclusion: In all groups, there was no effect on the onset time of the gluteus maximus muscle according based on the knee angle. In addition, the knee flexion angles affected the onset time of the muscle contraction of the gluteus maximus muscle in the hamstring shortened group and hamstring lengthened group with an abnormal length of the hamstring muscle.

Effect of High-frequency Diathermy on Hamstring Tightness

  • Kim, Ye Jin;Park, Joo-Hee;Kim, Ji-hyun;Moon, Gyeong Ah;Jeon, Hye-Seon
    • Physical Therapy Korea
    • /
    • v.28 no.1
    • /
    • pp.65-71
    • /
    • 2021
  • Background: The hamstring is a muscle that crosses two joints, that is the hip and knee, and its flexibility is an important indicator of physical health in its role in many activities of daily living such as sitting, walking, and running. Limited range of motion (ROM) due to hamstring tightness is strongly related to back pain and malfunction of the hip joint. High-frequency diathermy (HFD) therapy is known to be effective in relaxing the muscle and increasing ROM. Objects: To investigate the effects of HFD on active knee extension ROM and hamstring tone and stiffness in participants with hamstring tightness. Methods: Twenty-four participants with hamstring tightness were recruited, and the operational definition of hamstring tightness in this study was active knee extension ROM of below 160° at 90° hip flexion in the supine position. HFD was applied to the hamstring for 15 minutes using the WINBACK device. All participants were examined before and after the intervention, and the results were analyzed using a paired t-test. The outcome measures included knee extension ROM, the viscoelastic property of the hamstring, and peak torque for passive knee extension. Results: The active knee extension ROM significantly increased from 138.8° ± 9.9° (mean ± standard deviation) to 143.9° ± 10.4° after the intervention (p < 0.05), while viscoelastic property of the hamstring significantly decreased (p < 0.05). Also, the peak torque for knee extension significantly decreased (p < 0.05). Conclusion: Application of HFD for 15 minutes to tight hamstrings immediately improves the active ROM and reduces the tone, stiffness, and elasticity of the muscle. However, further experiments are required to examine the long-term effects of HFD on hamstring tightness including pain reduction, postural improvement around the pelvis and lower extremities, and enhanced functional movement.