• Title/Summary/Keyword: knee adduction moment

Search Result 29, Processing Time 0.026 seconds

Effects of Knee Brace on the Anterior Cruciate Ligament Injury Risk Factors during Spike Take Off in Female Volleyball Players (여자 배구 선수들의 스파이크 도약 시 무릎보호대가 전방십자인대 부상위험 요인에 미치는 영향)

  • Yang, Chang-Soo;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • In volleyball, the most common injuries are anterior cruciate ligament (ACL) tears. For this reason, volleyball players frequently use knee brace as prophylactic and rehabilitation measures. The purpose of the study was to investigate the effects of knee brace on anterior cruciate ligament injuries risk factors during spike take off in female volleyball players. Fifteen female volleyball players were recruited and performed randomly spike take off with and without knee brace. Kinematics and ground reaction data were collected to estimate the anterior cruciate ligament injuries risk factors. The ACL risk factors are knee maximum flexion angle, thigh maximum adduction angle, thigh maximum internal rotation angle, shank maximum abduction angle, shank maximum external rotation angle, knee maximum extension moment and knee maximum abduction moment. Data were analyzed with paired samples t-test with Bonfferoni collection. Female volleyball players with knee brace had no significant results in knee maximum flexion angle, thigh maximum adduction angle, thigh maximum internal rotation angle, shank maximum abduction angle and shank maximum external rotation angle compare to without knee brace. Female volleyball players, however, with knee brace showed more reduced knee maximum extension moment and knee maximal abduction moment than without knee brace. In conclusion, Female volleyball players with knee brace reduced anterior cruciate ligament stress.

Effect of Active Change of Foot Progression Angle on Lower Extremity Joint During Gait (보행 시 의도적인 발 디딤 각도 변화가 하지 관절 부하에 미치는 영향)

  • Go, Eun-Ae;Hong, Su-Yeon;Lee, Ki-Kang;An, Keun-Ok
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.85-90
    • /
    • 2013
  • Efficient gait is compensate for a lack of exercise, but the wrong walking can cause disease that joints, muscles, brain and body structure(Scott & Winter, 1990). Also many researchers has been studied gait of positive mechanism using analytical methods kinetic, kinematic. This study is to identify nature of knee adduction moment, depending on different foot progression angle and the movement of rotation of pelvis and body. Health study subject conducted intended walking with three different angles. The subjects of this study classified three types of walking; walk erect, pigeon-toed walk and an out-toed gait. Ten university students of K without previous operation and disease record selected for this study. For accuracy of this study, three types of walking carried out five times with 3D image analysis and using analysis of ground reaction force to analyze nature of knee adduction moment and the movement of rotation of pelvis and body. Firstly, the HC(heel contact) section value of intended walk erect, pigeon-toed walk and an out-toed gait was not shown statistically significant difference but TO(toe off) section value was shown that the pigeon-toed walk statistically significant. The value of pigeon-toed walk was smallest knee adduction moment(p< 0.005). Secondly, X axis was the change of rotation movement body and pelvis when walk erect, pigeon-toed walk and an out-toed gait. Shown statistically Y axis was not shown statistically significant but Z axis statistically significant(p<0.05). These result show the significant differences on TO section when walking moment reaches HC, it decides the walking types and rotates the foot.

A Review of Effects of Osteoarthritic Patient with a Varus Deformity of the Knee on Laterally Wedged Insole (외측 쐐기 깔창이 골관절염 환자의 내반슬에 미치는 영향에 관한 고찰)

  • Lee, Sang-Yong;Shin, Hyung-Soo;Bae, Sung-Soo
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 2005
  • Osteoarthritis has been considered a disease of the elderly because it is uncommon before the age of 40 years and is seen in approximately 80% of United States citizens older than 65 years. general population on kuri city in korea revealed that prevalence of knee osteoarthritis is 10.2%, increasing with age. High level of physical activity in men and age, post-menopause and obesity in women can be risk factor. Osteoarthritis is no evidence that a acquired process initiated much earlier in life through mechanical, metabolic, genetic, or other origins. A high tibial osteotomy alters static lower extremity alignment thereby decreasing medial compartment loading. As well, conservative treatment strategies, such as knee braces and valgus heel wedges, affect lover limb mechanics and attempt to reduce medial compartment loading. It was hypothesized that valgus heel wedges and modified orthoses would shift the center of pressure laterally on the foot during level walking, reducing the moment arm of the adduction moment in the frontal plane, thereby resulting in a decrease in the knee adduction moment. In the 1980s, the effect of wearing a laterally wedged insole on osteoarthritic patients with a varus deformity of the knee was firsted, and since then, kinematic and kinetic analyses concerning this condition have mainly focused on a static standing position. Since the early 1990s, the beneficial effect of wearing a laterally wedged insole to treat osteoarthritis of the knee has also been reported in dynamic conditions, but these studies did not answer the question of the kinematic and kinetic mechanisms that resulted in the reduced symptoms in patents with knee osteoarthritis. therefore, the effect of wearing laterally wedged insole has not been sufficiently studied.

  • PDF

The Changes of Joint Moments According to Weight Loading Gait on Normal Adults (정상 성인의 무게 부하 보행이 관절 모멘트의 변화에 미치는 영향)

  • Chung, Hyung-Kuk
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.2
    • /
    • pp.53-61
    • /
    • 2003
  • The purposes of this study were to describe and compare pint moments according to 6 types of gait methods during free speed. 15 volunteers(7 male, 8 female: mean age = 23.33 yrs.) participated and performed 6 types of gait methods. From the 3 types of pint moments of lower extremities(hip, knee, ankle and foot), the following results were made: 1. In left hip pint, the flexion-extension moment was not significantly different, but the adduction-abduction moment and rotation moment were showed different curves during stance phase. 2. In left knee pint, the flexion-extension moment was not significantly different, but the varus-valgus moment and rotation moment were showed different curves during stance phase. 3. In left ankle and foot the dorsiflexion-plantarflexion moment was not significantly different but the varus-valgus moment and rotation moment were showed different curves during stance phase. In conclusion, because weight loading gait with 10-20% of body weight were normal gait patterns, It was inferred that all weight loading gaits did not indicate noxious reactions of human body.

  • PDF

The effect of the stair heights on lower extremity joint moment in stair-ascent activity (계단 오르기 동작시 계단 높이에 따른 하지 관절 모멘트의 변화 분석)

  • Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.121-137
    • /
    • 2003
  • The purpose of this study was to investigate the effect of the stair heights on lower extremity joint moment in stair-ascent activity Data were collected by 3-D cinematography, force platform. six normal males were participated in this experiment. All subjects performed a stair-ascent in four different heights of stairs (10, 14, 18, 22cm) having a 5 step staircase. The moment of lower extremity joint was analyzed during stance phase. The results were as follows: First, the second increase of plantar flexion moment of ankle joint in the 'forward continuance' phase was not occurred for stair A and B. But it occurred for stair C and D. And the maximum plantar flexion moment increased as the stair height become higher. Second, it was shown that the maximum inversion moment of the ankle joint was the smallest at stair B and it increased significantly at stair C. Third, maximum extension moment appeared in the 'pull-up' phase. And it increased as the stair height become higher. Fourth, it was shown that the maximum abduction moment of the knee joint was the smallest at stair C and it increased significantly at stair C. Fifth, maximum extension moment of hip joint increased significantly at stair C. Sixth, remarkable value of adduction moment occurred at hip joints and maximum adduction moment increased at stair D.

The Effects of Strength Training on Knee Joint Torque During Walking in an Adolescent With Down Syndrome: A Single Case Study (근력훈련이 다운증후군 청년의 무릎 관절 토크에 미치는 영향)

  • Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.73-81
    • /
    • 2006
  • The purpose of this study was to investigate the effects of strength training on knee joint torque during walking in an adolescent with trisomy-21 Down syndrome. One adolescent with Down syndrome and one normal child participated in this study. Strength training consisted of eight exercises: squat, hamstring curl, hip adduction, hip abduction, knee extension, toe raise, sit-ups, and hyperextension of the waist. The participant with Down syndrome was participated in strength training for 12 weeks, three times a week, three sets, 10-15 RM; resistance was adjusted according to the principle of progressive overload. To measure the effect of strength training, isokinetic strength variables and knee joint torques were measured before training and after 12 weeks of training. The participant with Down syndrome had some abnormalities in controlling knee motion during walking due to muscle hypotonia, ligament laxity, and weakness of muscles. Post-training isokinetic strength increased compared to pre-training measurements. Knee range of motion were increased after strength training. Strength training did not affect ad/adduction and in/exteranl moments but did have an effect on flexor/extensor moment and timing.

Effects of Landing Foot Orientations on Biomechanics of Knee Joint in Single-legged Landing

  • Joo, Ji-Yong;Kim, Young-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2018
  • Objective: This study aimed to investigate the influence of landing foot orientations on biomechanics of knee joint in order to identify vulnerable positions to non-contact knee injuries during single-legged landing. Method: Seventeen men (age: $20.5{\pm}1.1 years$, height: $175.2{\pm}6.4cm$, weight: $68.8{\pm}5.8kg$) performed single-leg drop landings repeatedly with three different landing foot orientations. They were defined as toe-in (TI) $30^{\circ}$ adduction, neutral (N, neutral), and toe-out (TO) $30^{\circ}$ abduction positions. Results: The downward phase time of TI was significantly shorter than those of N and TO. The flexion and valgus angle of N was greater than those of TI and TO at the moment of foot contact. At the instance of maximum knee flexion, N showed the largest flexion angle, and TO position had the largest varus and external rotation angles. Regarding ground reaction force (GRF) at the moment of foot contact, TO showed the forward GRF, while others showed the backward GRF. TI indicated significantly larger mediolateral GRF than others. As for the maximum knee joint force and joint moment, the main effect of different foot positions was not significant. Conclusion: TI and TO might be vulnerable positions to knee injuries because both conditions might induce combined loadings to knee joint. TI had the highest mediolateral GRF with a shortest foot contact time, and TO had induced a large external rotation angle during downward phase and the peak forward GRF at the moment of foot contact. Conclusively, N is the preferred landing foot orientation to prevent non-contact knee injuries.

Biomechanical Alterations in the Lower limb Joints during the Punching Motion of Elderly Women after 12-Weeks of Taekwonaerobics Training (여성노인의 태권에어로빅스 12주 훈련 후 몸통지르기 동작시 하지관절의 생체역학적 변화)

  • Yoo, Sil
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.637-645
    • /
    • 2009
  • The purpose of this study was to investigate the biomechanical alterations in the punching motion of 10 elderly women after 12 weeks of taekwonaerobics training. Seven infrared cameras(Qualisys MCU-240) and 2 force platforms(Kistler-9286AA) were used to acquire raw data. The results were as follows. First, the minimum joint angles of the lower limbs had a statistically significant difference between both the dorsiflexion/plantar flexion(1eft, $p=0.001^*$) and the inversion/eversion(both, $p=0.009^*$, $p=0.04^*$) from the ankle angle. There were differences in abduction/adduction(left, $p=0.04^*$) from the knee angle, as well as internal/external rotation(both, $p=0.07^*$, $p=0.02^*$) from the hip angle. Second, the maximum resultant joint moments of the lower limbs had statistically significant differences in the inversion/eversion moment from the ankle joint(both, $p=0.05^*$, $p=0.05^*$), the abduction/adduction moment(left, $p=0.08^*$) from the knee joint, and the internal/external rotation moment(right, $p=0.09^*$) from the hip joint. Third, the maximum resultant joint powers of the lower limbs had a statistically significant difference both in flexion/extension joint powers(both, $p=0.05^*$, $p=0.01^*$) and in abduction/adduction(both, $p=0.02^*$, $p=0.00^*$) from the hip joint, as well as abduction/adduction(left, $p=0.00^*$) from the knee joint, In conclusion, the elderly women were somewhat changed after 12 weeks of taekwonaerobics training.

Effect of Added Mass between Male and Female on The Lower Extremity Joints Angular Velocity, Moment, Absorb Energy During Drop Landing (착지 시 외부 무게 부하에 따른 남성과 여성의 하지 관절 각속도, 모멘트, 에너지 흡수에 미치는 영향)

  • Kwon, Moon-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.325-332
    • /
    • 2012
  • This study aimed to analyze the effects of external load between male and female on angular velocity, moment, and absorbed energy of the lower-extremity joints during drop landing. The study subjects were 9 male($mass=70.82{\pm}4.64kg$, $height=1.71{\pm}0.04m$, $age=24.5{\pm}1.84years$), 9 female($mass=50.14{\pm}4.09kg$, $height=1.61{\pm}0.03m$, $age=23.6{\pm}2.62years$), without any serious musculoskeletal, coordination, balance, or joint/ligament problems for 1 year before the study. The angular velocity, flexion/extension and abduction/adduction moments, and absorbed energy of the lower-extremity joints were compared between the men and women during drop landing under 4 different conditions of external load(0%, 8%, 16%, and 24%) by using two-way repeated ANOVA(p < .05). The women landed with a greater peak angular velocity of the ankle joint, greater peak inversion moment, and lower peak hip-extension moment than the men did, under all 4 conditions. Additionally, the landing characteristics of the women were distinct from those of the men; the women showed a greater peak knee-adduction moment and greater absorbed energy of the knee joint. These differences indicate that anterior cruciate ligament(ACL) strain was greater in the women than in the men and therefore, women may be at a higher potential risk for noncontact injuries of the ACL with an increase in external load.

Analysis on lower extremity joint moment during a developpe devant (Developpe devant 수행시 하지 관절 모멘트 분석)

  • Park, Ki-Sa;Shin, Sung-Hu;Kwon, Moon-Seok;Kim, Tae-Hwan;Lee, Hung-Na
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.133-144
    • /
    • 2004
  • The purpose of this study was to analyze the joint moment on lower extremity during a developpe devant. Data were collected by Kwon3D, KwonGRF program. Two professional modem female dancers were participated in this experiment. Subjects performed a developpe devant in meddle heights. On the axes of X, Y, Z, it was shown that the maximum joint moment was occurred in hip joint. The moments are plotted during developpe devant. The ankle muscles generate a plantar flexion moment and the knee muscles generate a flexion moment and The hip muscles generate a extension moment. So these muscles of joint muscles were known to play a key role in keeping the body balance while doing developpe devant. In addition adduction moment occurred at hip, knee, an ankle in the order of amount, we could assume from this data that him out motion started from the hip joint. There was small active turn out possible below the hip joint. A small amount of extra turn out could be obtained when standing because of flexion between the foot and floor, which could be used to give a passive external rotation force to the whole leg and this could produce a rotation between the knee and foot. This passive external rotation could produce very damaging results. Therefore, lower extremity joint muscles such as hip, knee, and ankle muscle should be trained to keep the body balance and prevent injury during developpe devant performance. And for the safe and perfect turn ort performance, hip joint abduction, the most important external rotating muscle for him out is needed to train and full stretching should be done in advance.