• Title/Summary/Keyword: kinetic energy

Search Result 1,854, Processing Time 0.033 seconds

Mean Flow and Variability in the Upper Portion of the East Sea Proper Water in the southwestern East Sea with APEX Floats

  • Lee, Homan;Kim, Tae-Hee;Kim, Ji-Ho;Seo, Jang-Won;Youn, Yong-Hoon
    • Journal of Environmental Science International
    • /
    • v.13 no.2
    • /
    • pp.135-141
    • /
    • 2004
  • Drift data from 17 Argo profiling floats in the East Sea are used to understand the mean flow and its variability in the upper portion of the East Sea Proper Water (UESPW) (around 800 m). The flow penetrates into the Ulleung basin (UB) through two paths: an extension of the southward flowing of the North Korean Cold Water along the east coast of Korea and between Ulleung Island and Dok island. Flows at 800 m are observed in the range of from 0.2 to 4.29 cms-1 and the variability in the north of the UB is larger than that in the south of the UB. In the UB, cyclonic flows from 0.3 to 1.6 cms-1 are observed with the bottom topography. We found that the mean kinetic energy (MKE) and the mean eddy kinetic energy (EKE) are 1.3 and 2.1 cm2s-2 respectively.

Numerical Analysis of Deep Seawater Flow Disturbance Characteristics Near the Manganese Nodule Mining Device (망간단괴 집광기 주위 해수 유동교란 수치해석)

  • Lim, Sung-Jin;Chae, Yong-Bae;Jeong, Shin-Taek;Cho, Hong-Yeon;Lee, Sang-Ho
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.475-485
    • /
    • 2014
  • Seawater flow characteristics around a manganese nodule mining device in deep sea were analyzed through numerical investigation. The mining device influences the seawater flow field with complicated velocity distributions, and they are largely dependent on the seawater flow speed, device moving speed, and injection velocity from the collecting part. The flow velocity and turbulent kinetic energy distributions are compared at several positions from the device rear, side, and top, and it is possible to predict the distance from which the mining device affects the seawater flow field through the variation of turbulent kinetic energy. With the operation of the collecting device the turbulent kinetic energy remarkably increases, and it gradually decreases along the seawater flow direction. Turbulent kinetic energy behind the mining system increases with the seawater flow velocity. The transient behavior of nodule particles, which are not collected, is also predicted. This study will be helpful in creating an optimal design for a manganese nodule collecting device that can operate efficiently and which is eco-friendly.

Optimal Transducer Placement Based on Kinetic Energy of the Structural System (구조물의 운동 에너지 원리에 의한 감지기의 최적 위치)

  • Hwang, Chung-Yul;Heo, Gwang-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.2
    • /
    • pp.87-94
    • /
    • 1997
  • This research aims to develop an algorithm of optimal transducer placement using Kinetic Energy of the structural system. The structural vibration response-based health monitoring is considered one of the best for the system which requires a long-term, continuous monitoring. In its experimental modal testing, however, it is difficult to decide on the measurement locations and their number, especially for complex structures, which have a major influence on the quality of the results. In order to minimize the number of sensing operations and optimize the transducer location while maximizing the accuracy of results, this paper discusses about an optimum transducer placement criterion suitable for the identification of structural damage. As a criterion algorithm, it proposes the Kinetic Energy Optimization Technique (EOT), and then addresses the numerical issues which are subsequently applicable to actual experiment where a bridge model is used. By using the experimental data, it compares the EOT with the EIM (Effective Independence Method) which is generally used to optimize the transducer placement for the damage identification and control purposes. The comparison conclusively shows that the EOT algorithm proposed in this paper is preferable when a structure is to be instrumented with fewer sensors.

  • PDF

Relationship between solar flares and halo CMEs using stereoscopic observations

  • Jang, Soojeong;Moon, Yong-Jae;Kim, Sujin;Kim, Rok-Soon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.82-82
    • /
    • 2016
  • To find the relationship between solar flares and halo CMEs using stereoscopic observations, we investigate 182 flare-associated halo CMEs among 306 front-side halo CMEs from 2009 to 2013. We have determined the 3D parameters (radial speed and angular width) of these CMEs by applying StereoCAT to multi-spacecraft data (SOHO and STEREO). For this work, we use flare parameters (peak flux and fluence) taken from GOES X-ray flare list and 2D CME parameters (projected speed, apparent angular width, and kinetic energy) taken from CDAW SOHO LASCO CME catalog. Major results from this study are as follows. First, the relationship between flare peak flux (or fluence) and CME speed is almost same for both 2D and 3D cases. Second, there is a possible correlation between flare fluence and CME width, which is more evident in 3D case than 2D one. Third, the flare fluence is well correlated with CME kinetic energy (CC=0.63). Fourth, there is an upper limit of CME kinetic energy for a given flare fluence (or peak flux). For example, a possible CME kinetic energy ranges from 1030.6 to 1033 erg for a given X1.0 class flare. Our results will be discussed in view of the physical mechanism of solar eruptions.

  • PDF

A Numerical Study on the Flash Fire in the Combat System by the Kinetic Energy Ammunition and the Loaded Shells (운동에너지 탄과 적재포탄에 따른 전투시스템 내부에서의 순간화재발생에 대한 전산해석)

  • Lee, Seung-Chul;Jeon, Woo-Chul;Lee, Hae-Pyeong;Lee, Heon-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.828-832
    • /
    • 2013
  • In this paper, numerical analysis was performed about whether the flash fire of loaded shells breaks out in the virtual combat vehicle according to sorts of the kinetic energy ammunition as the preceding research for vulnerability analysis inside the combat system by an external threaty ammunition. In this simulation, Autodyn program was used and the Lee-Tarver ignition and growth model was used to determine the flash fire outbreak. In this study, the kinetic energy ammunition was set of type A and type B in two kinds and the loaded shells was set of COMPB, TNT, PBX9404 and ANB. As a result, TNT and PBX9404 have much higher flash fire probability than COMPB in high explosive, ANB has very low flash fire probability.

Changes of the Kinetic Energy of Putter Head and Ball Movements during the Process of Impact (퍼팅 스트로크의 충돌과정에서 나타난 퍼터헤드와 볼의 운동에너지 변화 분석)

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.175-183
    • /
    • 2003
  • The purpose of this study was to analyze the kinetic energy of putter head and ball movements during the process of impact. Highly skilled 5 golfers(less than 1 handicap) participated in this study and the target distance was 3 m. Movements of ball and putter head were recorded with 2 VHS video cameras(60 Hz, 1/500 s shutter speed). Small control object($18.5{\times}18.5{\times}78.5\;cm$) was used in this sdtuldy. Analyzing the process of impact, putter was digitized before 0.0835 s and after 0.0835 s of impact. Ball was digitized 0.1336 s after impact. The results showed that the maximum speed was appeared at Impact and prolonged for a while. Contact point of the club head was within 0.7 cm to the z axis. After contacting the club head, the ball was moved above the ground level(slide) and returned to the ground with sliding and rolling. After contacting the ground, the speed of ball was relied on the surface of the ground. During impact, 70% of kinetic energy of club head has been transferred to the ball.

Analysis on the Reduction of Cooling Load and Improvement of Visual Environment by applying a Kinetic Shading Device in Summer (가변형 차양장치 적용에 따른 하절기 냉방부하 저감 및 빛환경 개선효과 분석)

  • Cha, Gi-Wook;Moon, Hyeun Jun;Kim, Ho-Jeong;Hong, Won-Hwa;Baik, Yong-Kyu
    • Journal of Korean Living Environment System
    • /
    • v.24 no.6
    • /
    • pp.810-823
    • /
    • 2017
  • The envelope is important for sustainable building. Recent commercial buildings are causing thermal degradation and cooling load due to the increase of the area of the windows. Therefore, this research studied kinetic shading system which can improve energy saving and visual environment in summer. For that, this study proposed new shading system and shape considering the orientation of the building and the location of the sun. Based on this, this study analyzed the effectiveness on energy reduction and improvement of visual environment by applying the kinetic shading system proposed in this study. As the results of this study, energy reduction rate was 35% in the east, 22.9% in the south, and 30.7% in the west depending on the application location. Also, as the result of the illuminance analysis, it was found that the effect of achieving uniformity ratio of illumination was considerable.

Exploring the Relationship between the Kinetic Energy and Intensity of Rainfall in Sangju, Korea

  • Van, Linh Nguyen;Le, Xuan-Hien;Yeon, Minho;Thi, Tuyet-May Do;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.151-151
    • /
    • 2022
  • The impact of raindrops on the soil surface causes soil detachment, which may be estimated by measuring the kinetic energy (KE) of the raindrops. Since direct measurements of rainfall force on ground surfaces are not generally available, empirical equations are an alternative option to estimate KE from rainfall intensity (I), which has the greatest influence over soil erosion and is easily accessible. Establishing the optimal formulation for the relationship between kinetic energy and rainfall intensity has proven to be difficult. Thus, this research considered thirty-seven rainfall events observed from June 2020 to December 2021 using a laster optical disdrometer erected in Kyungpook National University to examine the characteristics of KE-I relationships. We concentrated our discussion on the formation of two different expressions of the KE, including KE expenditure (KEexp) and KE content (KEcon). The following conclusions were drawn: (1) We employed statistical analysis to demonstrate that the KEexp is more suitable expression for establishing an empirical rule between KE and I than the KEcon. (2) A power-law model was used to find the best correlation between KEexp-I relationship, whereas the best match between KEcon and I were found using an exponential equation.

  • PDF

The Experimental Study on the Absorbed Energy of Carbon/Epoxy Composite Laminated Panel Subjected to High-velocity Impact (고속 충격을 받는 Carbon/Epoxy 복합재 적층판의 흡수 에너지 예측에 대한 실험적 고찰)

  • Cho, Hyun-Jun;Kim, In-Gul;Lee, Seokje;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.175-181
    • /
    • 2013
  • The evaluation and prediction for the absorbed energy, residual velocity, and impact damage are the key things to characterize the impact behavior of composite laminated panel subjected to high-velocity impact. In this paper, the method to predict the residual velocity and the absorbed energy of Carbon/Epoxy laminated panel subjected to high velocity impact are proposed and examined by using quasi-static perforation test and high-velocity impact test. Total absorbed energy of specimen due to the high-velocity impact can be grouped with static energy and kinetic energy. The static energy are consisted of energy due to the failure of the fiber and matrix and static elastic energy, which are related to the quasi-static perforation energy. The kinetic energy are consisted of kinetic energy of moving part of specimen, which are modelled by three modified kinetic model. The high-velocity impact test were conducted by using air gun impact facility and compared with the predicted values. The damage area of specimen were examined by C-scan image. In the high initial impact velocity above the ballistic limit, both the static energy and the kinetic energy are known to be the major contribution of the total absorbed energy.

The Contribution of Body Segments to the Club Head's Kinetic Energy in the Golf Swing (골프 스윙 시 클럽 헤드의 운동에너지에 대한 신체 분절의 기여도)

  • Chang, Jae-Kwan;Ryu, Ji-Seon;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.317-325
    • /
    • 2011
  • The purpose of this study was to investigate the contributions of body joints to the kinetic energy of the clubhead in the golf swing. Three dimensional swing analysis was conducted on the seven KPGA golfers. The subjects were asked to swing with 45 inches of driver. The work done by body joints were computed by utilizing the inverse dynamics method. The order of work done by the body joints was lumbar > left hip > right shoulder > left wrist > right wrist > right hip at the first phase. At the second phase, the order of work done by the body joints was trunk > left elbow > right wrist > right shoulder > left wrist > right wrist. At the third phase, the order of work done by body joints was lumbar > right shoulder > left shoulder > left elbow > right wrist > right elbow. The sum of the work done by the body joints was lumbar > shoulder > wrist on the average. The kinetic energy of the club head was 430.11${\pm}$24.35 J and the subject's swing efficiency was shown as 31.82${\pm}$4.86% on the average. The contributions of body joints to the kinetic energy of the clubhead was the order of lumbar > upper right shoulder > left elbow > right wrist during the down swing.