• Title/Summary/Keyword: kimchi fermentation

Search Result 855, Processing Time 0.028 seconds

Effects of Protein Sources on Kimchi Fermentation and on the Stability of Ascorbic Acid (단백질(蛋白質) 급원(給源) 식품(食品)이 김치의 발효와 Ascorbic Acid의 안정도(安定度)에 미치는 영향(影響))

  • Lee, H.S.;Ko, Y.T.;Lim, S.J.
    • Journal of Nutrition and Health
    • /
    • v.17 no.2
    • /
    • pp.101-107
    • /
    • 1984
  • Effects of protein-sources on Kimchi fermentation and on the stability of ascorbic acid were investigated at $7{\pm}1^{\circ}C.$ Kimchi samples with various protein sources showed the higher pH and total acidity through the fermentation period than kimchi without the proteins. The results revealed that the proteins have acted as good buffer and lactobacilli-growth enhancer in the fermentation, and the milk proteins showed the most significant effect among the samples. The lactobacilli were at the highest growth at 15th day in all the samples. The amounts and changes in ascorbic acid content during the fermentation did not differ significantly between the control and protein added samples. The fresh, unfermented kimchi contained 14.5-15.7mg of ascorbic acid per 100g of sample and decreased continuously by the 12th day of fermentation. After then the vitamin increased in all the samples and then again decreased slowly after 18th day. The contents of ascorbic acid at the end of the 3 weeks-fermentation(16.3-17.3mg/100g) were still higher than the contents of fresh, unfermented kimchi.

  • PDF

Effect of Reducing Sugar Content in Chines Cabbage on Kimchi Fermentation (배추의 환원당 함량이 김치 발효에 미치는 영향)

  • 김동관;김병기;김명환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.1
    • /
    • pp.73-77
    • /
    • 1994
  • This study was conducted to investigate and make comparison between treatment which was reduced the reducing sugar content from Chinese cabbage using salting and desalting processes prior to Kimchi fermentation , and control for the effect of reducing sugar content on Kimchi fermentation at $25^{\circ}C$. In the early stage of Kimchi fermentation , the amount of reducing sugar (5.7mg/ml) in treatment was much smaller than that (15.1mg/ml) in control. Reducing sugar content of treatment decreased drastically during the first two days and then levelled off . Whereas, that of control dropped significantly up to the first four days of fermentation. pHs of treatment and control decreased significantly during the first two days and then showed gentle slopes. Acidities of treatment and control were increased continuously during the entire range of fermentation . The acidity of control reached to 0.75% in 3 days of fermentation, while that of treatment was shown after 6 days. Hardnesses of treatment and control using a puncture test were almost constant and the hardness value of treatment was higher than that of control during whole fermentation period. The total bacteria and lactic acid bacteria counts increased drastically during the first day of fermentation and the increase of total bacteria counts was mainly caused by that of lactic acid bacteria counts.

  • PDF

Effects of Kugija(Lycium chinesis Miller) on the Sensory Properties and Lactic Acid Bacterial count of Nabak Kimchi during Fermentation (구기자가 나박김치의 발효 중 관능적 특성과 젖산균수에 미치는 영향)

  • 정광자;김미정;장명숙
    • Korean journal of food and cookery science
    • /
    • v.19 no.4
    • /
    • pp.521-528
    • /
    • 2003
  • This research was conducted to find the effects of the addition of kugija to the quality and conservativeness of Nabak kimchi. Kugija extract was prepared by boiling kugija fruits, at different ratios (1, 3, 5 and 7%; w/v) in water for 30 minutes. The changes in the sensory and microbiological properties of the Nabak kimchi were measured for 25 days, following the preparation at a uniform temperature of 10$^{\circ}C$, and compared to a control (distilled water without kugija). For the properties of acceptability, the Nabak kimchi treated with 3% kugija was evaluated as being best during the whole fermentation. The number of total cell counts and number of lactic acid microorganisms gradually increased to a maximum, and then decreased. It was the maximum for controlling and 1 % treatment on day 2, forand 3, 5 and 7% treatment on day 7. (Eds note: the highlighted sentence needs c1arification\ulcorner)This experimental study revealed the effect of kugija extract in enhancing the eating qualities on Nabak kimchi and retarding the fermentation over the initial seven days. The optimum levels of kugija extract on Nabak kimchi obtained through experiments was between 1 and 3% of the water content. Although 3% gave a better color, the fermentation-retarding effect and savory taste. The application of kugija extract could be domestically applied to improve the eating quality and the preservation of traditionally prepared Nabak kimchi.

Effect of Maesil(Prunus mume) byproduct Obtained from Maesil Liqueur Manufacture on Kimchi Fermentation (매실 리큐르 제조 부산물인 매실의 첨가가 김치 발효에 미치는 영향)

  • Chae, Myeung-Hee;Park, Na-Young;Lee, Shin-Ho
    • Food Science and Preservation
    • /
    • v.13 no.6
    • /
    • pp.783-788
    • /
    • 2006
  • Quality changes of kimchi added with 10 or 20% Prunus mume liqueur byproduct (PLB), obtained after producing Prunus mume liqueur. during fermentation at $10^{\circ}C$ for 25 days were investigated. The pH and titrtable acidity in 20% PLB added kimchi were changed more gradually during fermentation for 25 days compared to control. Total bacteria and lactic acid bacteria counts in kimchi added with 20% PLB were lower than those of control during fermentation for 15 days. Kimchi fermentation was delayed about 10 days with 20% PLB. L and a values of kimchi added with PLB decreased but b value increased with increasing the concentration of PLB. In the sensory evaluation of kimchi fermented for 10 days, the texture score of PLB added kimchi was higher than that of control, and increased with increasing the concentration of PLB. There were no significant differences (p < 0.05) in overall acceptability among control kimchi and PLB added kimchi.

Antioxidant effects of kimchi supplemented with black raspberry during fermentation protect against liver cirrhosis-induced oxidative stress in rats

  • Ryu, Eun-Hye;Yang, Ji-Su;Lee, Min-Jung;Kim, Sung Hyun;Seo, Hye-Young;Jung, Ji-Hye
    • Nutrition Research and Practice
    • /
    • v.13 no.2
    • /
    • pp.87-94
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Oxidative stress is a major effector of various diseases; accordingly, antioxidants are frequently ingested in order to prevent or alleviate disease symptoms. Kimchi contains various natural antioxidants, and it is known that the functional activity varies depending on the ingredients and fermentation state. Black raspberries (BR) contain various bioactive compounds with antioxidant effects. This study investigated the antioxidant and liver-protection effects of kimchi supplemented with black raspberry juice powder (BJP). MATERIALS/METHODS: BJP-added kimchi (BAK; at 0.5%, 1%, and 2% concentrations of BJP) and control (without BJP) were prepared and fermented at $4^{\circ}C$ for 4 weeks. Changes in the antioxidant effects of BAK during fermentation were investigated. In addition, the protective activity of BAK against oxidative stress was investigated in a liver cirrhosis-induced animal model in vivo. RESULTS: BAK groups showed the acidity and pH of optimally ripened (OR) kimchi at 2 weeks of fermentation along with the highest lactic acid bacterial counts. Additionally, BAK groups displayed a higher content of phenolic compounds and elevated antioxidant activities relative to the control, with the highest antioxidant effect observed at 2 weeks of fermentation of OR 1% BAK. After feeding the OR 1% BAK to thioacetamide-induced liver cirrhosis rats, we observed decreased glutamate oxaloacetate transaminase and glutamate pyruvate transaminase activities and elevated superoxide dismutase activity. CONCLUSIONS: These findings showed that the antioxidant effects of OR BAK and feeding of OR 1% BAK resulted in liver-protective effects against oxidative stress.

Change in Color of Kimchi during Fermentation (김치의 숙성중 색상변화에 관한 연구)

  • 김미경;하귀현;김미정;김순동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.274-278
    • /
    • 1994
  • Correlation between pH and color of Kimchi during fermentation was investigated to visually evaluate the fermentation degree of Chinese cabbage Kimchi. Color "a" and 'H" values in the white part, "a", "H" and "C" values in the green part of the Kimchi showed a high correlation with pH, respectively. "a" and "H" values of Kimchi juice. "L" and "V" values of red pepper attached to kimchi had a high correlation with pH. The color of the white part was light greenish white in unripended Kimchi, but changed to redish in ripended kimchi. Green part changed from light green to redish green as ripening. Red pepper powder attached to kimchi showed redish color in unripening, but changed to yellowish re din over ripening.

  • PDF

Effects of Omija (Schizandra chinensis Baillon) on the Sensory and Microbiological Properties of Nabak Kimchi during Fermentation (오미자가 나박김치의 발효 중 관능적 및 미생물학적 특성에 미치는 영향)

  • 문성원;장명숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.5
    • /
    • pp.822-831
    • /
    • 2000
  • Application of omija(Schizndra chinensis Baillon) to improve the quality and preservation of nabka kimchi was attempted and the optimal amount of omija level and its effect on the sensory and microbiological properties of nab마 kimchi during fermentation were examined. Effects of omija juice which had been prepared by extracting omija seeds for 9 hr at room temperature (22.5$\pm$0.5$^{\circ}C$) with different ratios (0.5, 1.0, 1.5, 2.0%;w/v) of water were examined against control (kimchi prepared without omija). Organoleptic and microbiological properties of nabak kimchi were measured up to 25 days at 1$0^{\circ}C$ after preparation. Sensory properties were evaluated in the aspects of both acceptability and intensity characteristics. In whole, 0.5 and 1.0% treatments showed higher values of evaluation, compared to control, 1.5, and 2.0% treatments throughout the fermentation period. As fermentation progresses, however, sample of 1.0% treatment ranked first between day 4 to 7 and also so did sample of 0.5% treatment along with 1.0% treatment from behind day 10. As for color, control, 0.5% treatment, and 1.0% treatment were more favored than rest of the samples. In texture, 2.0% treatment showed the highest values, whereas control was rated the lowest. In the intensity of characteristics 1.5% and 2.0% treatments showed higher values except sweet taste in which 1.0% treatment ranked top during the initial 7 days and then 0.5% treatment took the first place at behind day 10. total cell counts and number of lactic acid bacteria were gradually increased and then decreased showing the maximum levels of microbial counts on different days, to say, day 2 for control and 0.5% treatment nd day 7 for 1.0, 1.5 and 2.0% treatments. The application of omija juice in nabak kimchi enhanced eating qualities of the fermented product and the fermentation-retarding effect of omija juice was clearly shown during the initial seven days of fermentation. The optimum levels of omija juice in nabak kimchi obtained through experiments were between 0.5 to 1.0% for color, fermentation-retarding effects, and savory taste of the product.

  • PDF

Effect of Temperature and Salt Concentration on Kimchi Fermentation (김치발효에 미치는 온도 및 식염농도의 영향)

  • Mheen, Tae-Ick;Kwon, Tai-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.443-450
    • /
    • 1984
  • Chemical and microbial changes during Kimchi (a group of Korean seasoned pickles) fermentation were carried out at various temperatures and salt concentrations. The time reaching optimum ripening of Kimchi varied depending upon fermentation temperature and salt concentration. At high temperature and low salt content Kimchi fermentation was faster than at low temperature and high salt content. The ratio of volatile to non-volatile acids reached its maximum at the optimum ripening time of Kimchi and decreased thereafter. Leu. mesenteroids, Lac. brevis, Lac. plantarum, Ped. cerevisiae, Str. faecalis and low acid producing Lactobacilli were isolated from Kimchi samples. However, the main microorganism responsible for Kimchi fermentation was Leu. mesenteroides and Lac. plantarum was the main acidifying organism. Total viable count increased rapidly in the beginning of fermentation and reached its maximum number at optimum ripening time and then decreased slowly as the acidity of Kimchi increased. While the total aerobic bacteria and fungi decreased during Kimchi fermentation, the yeast increased significantly at lower temperature.

  • PDF

Changes in Physicochemical Properties of Baik-kimchi during Fermentation (백김치 숙성중 물리화학적 특성변화)

  • 문수경;류홍수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1013-1020
    • /
    • 1997
  • To elicit the effect of fermentation on food quality of the watery Chinese cabbage pickles without fish sauce and red pepper paste(Baik-kimchi), changes in physicochemical properties and microstructure of fiber components were studied. Better water holding capacity(WHC) was showed in Baik-kimchi fermented at $25^{\circ}C$ than that of Baik-kimchi fermented at 5$^{\circ}C$. WHC measured at pH 2 and 6 were ranged from 10.18 to 16.79g/g dried sample for Baik-kimchi fermented at $25^{\circ}C$ and 6.51~14.58g/g dried sample for sample for samples at 5$^{\circ}C$, respectively. The higher WHC was resulted in pH controlled freeze-dried sample to pH 6 than that measured in pH 2 sample. The settling volume(SV) and oil adsorption capacity(OAC) increased with fermentation period and kept the same value for a little while, but slightly decreased in the over ripening period. Baik-kimchi fermented at $25^{\circ}C$ exhibited more shrunk microstructure of parenchyma cell and xylem than those of Baik-kimchi fermented at 5$^{\circ}C$. The appearance of SDF of the both Baik-kimchi ripened at 5$^{\circ}C$ and $25^{\circ}C$ could give granular shape, whereas the overripened Baik-kimchi had smooth surface of SDF. On the other hand, the IDF retained the original shape during fermentation.

  • PDF

Kimchi and Its Functionality (김치와 김치의 건강기능성)

  • Park, Kun-Young;Hong, Geun-Hye
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.2
    • /
    • pp.142-158
    • /
    • 2019
  • Kimchi is a traditional Korean fermented vegetable probiotic food. The use of high quality ingredients and predominant LAB (lactic acid bacteria)-whether it be ambient bacteria or adding starters, low temperature and facultative anaerobic condition for the fermentation are important factors for preparing kimchi with better taste and functionality. The predominated LAB genera are Leuconostoc, Lactobacillus, and Weissella in kimchi fermentation. The representative species are Leu. mesenteroides, Leu. citrium, Lab. plantarum, Lab. sakei, and Wei. koreensis. Kimchi, especially the optimally fermented kimchi, has various health benefits, including control of colon health, antioxidation, antiaging effects, cancer preventive effect, antiobesity, control of dyslipidemic and metabolic syndrome, etc.; due to the presence of LAB, various nutraceuticals, and metabolites from the ingredients and LAB. The kimchi LAB are good probiotics, exhibiting antimicrobial activity, antioxidant, antimutagenic and anticancer effects, as well as immunomodualatory effect, antiobesity, and cholesterol and lipid lowering effects. Thus, kimchi ingredients, LAB, fermentation methods, and metabolites are important factors that modulate various functionalities. In this review, we introduced recent information showing kimchi and its health benefits in Korean Functional Foods (Park & Ju 2018).