• Title/Summary/Keyword: kick-motor

Search Result 63, Processing Time 0.018 seconds

Trans Lunar Injection (TLI) Maneuver Design and Analysis using Finite Thrust (제한추력을 이용한 달 천이(TLI) 기동의 설계 및 해석)

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.998-1011
    • /
    • 2010
  • For preparing Korean lunar missions, an Earth-Moon transfer trajectory is designed and analyzed using finite thrust. To be a more realistic scenario, kick motor's performance which is used for TLI (Trans Lunar Injection) maneuver is assumed to have a certain maximum capability. Under this assumption, optimal Earth-Moon transfer trajectory analysis is made from the beginning of Earth departure to the final lunar closest approach. As a results, optimal Earth-Moon transfer trajectory solutions with finite thrust are compared to those of designed with impulsive thrust in previous study. It is confirmed that if the trajectory solutions derived with impulsive burn is directly applied to estimate the finite burn trajectory solutions, careful consideration for finite burn losses must be paid as for TLI maneuver. Presented algorithm and various results will give numerous insights into the future Korea's Lunar missions using finite thrust engines.

Dynamic Analysis and Linear Model Estimation for Flight Model TVC System of KSLV-I Stage-II (KSLV-I 2단부 비행용 TVC 동특성 분석 및 선형모델 추정)

  • Sun, Byung-Chan;Park, Yong-Kyu;Oh, Choong-Seak;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.83-91
    • /
    • 2009
  • This paper concerns the dynamic property of TVC system in the upper stage of KSLV-I. The minimum bandwidth of TVC system is predicted by gathering and comparing the dynamic test data through whole development phases of KSLV-I. The linear models which approximate the dynamic data are also suggested. It is shown that the minimum bandwidth of KSLV-I TVC system is guaranteed over 6.0 Hz at one degree command. It is also shown that the linear model of KSLV-I TVC dynamics takes the form of the transfer function with an 8-th order denominator and a 2-nd order numerator. These results will play an important role in analyzing the flight stability and performance of KSLV-I.

  • PDF

Plume Density Simulation of KM Residual Thrust Using DSMC Method (DSMC 방법을 이용한 킥모터 잔류추력 Plume Density 시뮬레이션)

  • Choi, Young-In;Kim, Keun-Taek
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.27-33
    • /
    • 2014
  • 2nd stage of KSLV-I, NaRo-Ho, performs CCAM not to collide with Naro Science Satellite. At that moment, the satellite should pass through the Plume Density area which was generated by KSLV-I KM residual thrust. Therefore, it is necessary to predict Plume Density field of KM residual thrust and guarantee the safety of the trajectory of payload. In this paper, DSMC method was used to simulate Plume Density by KM residual thrust and the simulation showed that the trajectory of Naro Science Satellite was safe.